搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于物理约束神经网络的单模光纤非线性效应高精度解析

祝沐 佟首峰 丁蕴丰 张鹏

引用本文:
Citation:

基于物理约束神经网络的单模光纤非线性效应高精度解析

祝沐, 佟首峰, 丁蕴丰, 张鹏

High-precision analysis of nonlinear effects in single-mode fiber based on physically constrained neural network (MSPC-Net)

ZHU Mu, TONG Shoufeng, DING Yunfeng, ZHANG Peng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 针对单模光纤中四波混频-受激拉曼散射(FWM-SRS)强非线性耦合效应难以解析的问题, 本文提出了一种融合物理机理与神经网络的多尺度物理约束网络(MSPC-Net). 该模型通过将非线性薛定谔方程(NLSE)的频域残差作为物理约束项嵌入网络优化过程, 并设计多尺度空洞卷积模块融合局部细节、中程展宽及长程衰减特征, 实现了光谱成分分离与物理参数的联合高精度反演. 在250 m与500 m单模石英光纤实验中, MSPC-Net重建斯托克斯光谱的均方根误差(RMSE)分别低至0.014与0.0173, 较传统卷积神经网络降低超68%; 其频率偏移预测的平均绝对误差分别为0.03 nm和0.04 nm, 精度较现有方法提升约90%. 在信噪比(SNR)为6 dB的噪声环境下, MSPC-Net对FWM次峰信息的检测正确率高达95.3%, 伪峰率低于4.7%. 模型得益于物理约束的引导及轻量化结构设计, 在SNR = 15 dB噪声下RMSE增幅仅9.8%, 并具备良好的实时处理能力, 可部署于嵌入式设备, 为高功率光通信系统优化与分布式光纤传感提供高效解决方案. 本研究通过将严格物理规律与多尺度特征提取相结合, 有效解决了长距离光纤复杂非线性效应的解析难题, 显著提升了预测结果的理论符合度与噪声鲁棒性.
    In view of the difficulty in analyzing the strong nonlinear coupling effect between four-wave mixing and stimulated Raman scattering in single-mode optical fibers, this paper introduces a novel multi-scale physically constrained network (MSPC-Net), which effectively integrates fundamental physical mechanisms with advanced neural network techniques. The proposed model incorporates the frequency domain residual derived from the nonlinear Schrödinger equation directly into the network optimization procedure as a differentiable physical constraint term. This strategic inclusiveness ensures that the learning process is consistent with the fundamental physical principles governing light propagation in optical fibers. Furthermore, the model architecture adopts a multi-scale dilated convolution module specifically designed to capture and fuse features across different granularities, including fine local spectral details, intermediate-range broadening effects, and long-range attenuation trends. This multi-scale approach can realize the simultaneous and high-precision inversion of both separated spectral components and critical physical parameters.Experimental evaluations are conducted using single-mode quartz fibers with lengths of 250 meters and 500 meters, respectively. The results demonstrate that the Stokes spectra reconstructed by MSPC-Net achieve remarkably low root mean square errors, only 0.014 and 0.0173 for the two fiber lengths respectively. This performance represents a reduction of more than 68% compared with that of traditional convolutional neural networks. Additionally, the average absolute errors of frequency offset prediction are as low as 0.03 nmr and 0.04 nm, with an accuracy improvement of approximately 90% compared with those of existing state-of-the-art methods. Under noisy conditions with a signal-to-noise ratio of 6 dB, the model maintains an exceptional detection accuracy of up to 95.3% for identifying four wave mixing (FWM) sub-peak information, while keeping the pseudo-peak rate below 4.7%.Owing to the embedded physical constraints and lightweight structural design, the proposed model shows just a 9.8% increase in root mean square error even under challenging noise conditions with a signal-to-noise ratio of 15 dB. Moreover, MSPC-Net demonstrates satisfactory real-time processing capabilities, making it suitable for deployment on embedded devices. This practical efficiency makes the model a promising solution for optimizing high-power optical communication systems and advancing distributed optical fiber sensing applications. By successfully combining strict physical laws with multi-scale feature extraction, this research presents an effective approach to resolving the analytical difficulties associated with complex nonlinear effects in long-distance optical fibers, while significantly improving both the theoretical consistency and noise robustness of the prediction outcomes.
  • 图 1  高峰值功率Nd3+: YAG脉冲激光器泵浦单模光纤产生非线性效应实验装置 (a) 实验装置原理图, 其中1为激光对准器, 2为1064 nm高反射镜, 3为1/4载玻片, 4为磷酸二氢钾晶体(KDP), 5为布儒斯特板, 6为脉冲氙灯, 7为Nd3+: YAG晶体棒腔, 8为输出镜, 9为磷酸氧钛钾晶体(KTP), 10为偏振片, 11为全反射镜, 12为聚焦透镜, 13为光纤法兰盘, 14为单模硅光纤, 15为接收仓, 16为光谱仪, 17为计算机; (b) 装置启动前; (c) 装置启动后

    Fig. 1.  Experimental setup for nonlinear effects generated by pumping single-mode fiber with high peak power Nd3+: YAG pulse laser: (a) Experimental device schematic, where 1 represents laser aligner, 2 represents 1064 nm high reflecting mirror, 3 represents 1/4 glass slide, 4 represents Potassium dihydrogen phosphate crystal (KDP), 5 represents brewster plate, 6 represents pulse Xenon lamp, 7 represents Nd3+: YAG crystal rod cavity, 8 represents output mirror, 9 represents potassium titanyl phosphate crystal (KTP), 10 represents polaroid plate, 11 represents total reflective mirror, 12 represents focusing len, 13 represents optical fiber flange plate, 14 represents single mode silicon fiber, 15 represents receiving magazine, 16 represents spectrometer, 17 represents computer; (b) before start of the device; (c) a fter start of the device.

    图 2  MSRA-Net和MSPC-Net模型架构图

    Fig. 2.  MSRA-Net and MSPC-Net model architecture diagram.

    图 3  250 m 光纤非线性光谱

    Fig. 3.  250 m fiber nonlinear spectrum.

    图 4  500 m 光纤非线性光谱

    Fig. 4.  500 m fiber nonlinear spectrum.

    图 5  250 m 光纤训练表现

    Fig. 5.  Training performance of 250 m optical fiber.

    图 6  500 m 光纤训练表现

    Fig. 6.  Training performance of 500 m optical fiber.

    图 7  误差增幅对比

    Fig. 7.  Comparison of error increase.

    图 8  光纤长度对最终RMSE的影响

    Fig. 8.  Effect of fiber length on the final RMSE.

    图 9  训练效率与收敛特性图

    Fig. 9.  Training efficiency and convergence characteristic diagram.

    图 10  噪声鲁棒性图

    Fig. 10.  Noise robustness diagram.

    图 11  分步傅里叶法

    Fig. 11.  Split-step Fourier method.

    图 12  频移预测误差对比

    Fig. 12.  Frequency shift prediction error.

    图 13  频移预测相关性分析

    Fig. 13.  Prediction correlation analysis.

    表 1  250 m光纤模型性能对比

    Table 1.  Performance comparison of 250 m optical fiber model.

    indexCNNBiLSTM250 m
    MSPC-Net
    SRS reconstructs RMSE0.0140.01890.0098
    Sub-peak positioning
    error/nm
    0.180.150.05
    Frequency shift prediction
    deviation/nm
    0.380.240.03
    Recognition rate
    under noise/%
    67.563.895.3
    Training time/s9512887
    下载: 导出CSV

    表 2  500 m光纤模型性能对比

    Table 2.  Performance comparison of 500 m optical fiber model.

    indexCNNBiLSTM500 m
    MSPC-Net
    SRS reconstructs RMSE0.01730.0240.012
    Sub-peak positioning
    error/nm
    0.200.170.06
    Frequency shift prediction
    deviation/nm
    0.610.600.04
    Recognition rate
    under noise/%
    61.878.294.1
    Training time/s9612887
    下载: 导出CSV

    表 3  物理参数反演精度对比

    Table 3.  Comparison of physical parameter inversion accuracy.

    indexMSPC-Net(500 m)CNN(500 m)BiLSTM(500 m)
    $ {\beta }_{2} $<4.2%>22%>18%
    $ \gamma $<5%>30%>25%
    下载: 导出CSV
  • [1]

    姚天甫, 范晨晨, 郝修路, 李阳, 黄善旻, 张汉伟, 许将明, 叶俊, 冷进勇, 周朴 2024 中国激光 51 1901010Google Scholar

    Yao T P, Fan C C, Hao X L, Li Y, Huang S W, Zhang H W, Xu J M, Ye J, Leng J Y, Zhou P 2024 Chin. J. Lasers. 51 1901010Google Scholar

    [2]

    张帆, 李健, 李璐磊, 曹康怡, 薛晓辉, 张明江 2025 红外与激光工程 54 289

    Zhang F, Li J, Li L L, Cao K Y, Xue X H, Zhang M J 2025 Infrared Laser Eng. 54 289

    [3]

    张鹏, 田春林, 乔勇, 吕栋栋 2018 激光与光电子学进展 55 061901Google Scholar

    Zhang P, Tian C L, Qiao Y, Lyu D D 2018 Laser Optoelectron. Prog. 55 061901Google Scholar

    [4]

    张鹏, 田春林 2016 光学学报 36 0819001Google Scholar

    Zhang P, Tian C L 2016 Acta Opt. Sin. 36 0819001Google Scholar

    [5]

    毛昕蓉, 寇召飞, 张建华 2017 激光与光电子学进展 54 080601Google Scholar

    Mao X R, Kou Z F, Zhang J H 2017 Laser Optoelectron. Prog. 54 080601Google Scholar

    [6]

    郑也, 倪庆乐, 张琳, 刘小溪, 王军龙, 王学锋 2021 中国激光 48 0701005Google Scholar

    Zheng Y, Ni Q L, Zhang L, Liu X X, Wang J L, Wang X F 2021 Chin. J. Lasers 48 0701005Google Scholar

    [7]

    隋皓, 朱宏娜, 贾焕玉, 欧洺余, 李祺, 罗斌, 邹喜华 2023 中国激光 50 1101011Google Scholar

    Sui H, Zhu H N, Jia H Y, Ou M Y, Li Q, Luo B, Zou Xi H 2023 Chin. J. Lasers. 50 1101011Google Scholar

    [8]

    张丽丽, 栗相如, 刘佳辉, 房启志 2025 中国激光 52 1309002Google Scholar

    Zhang L L, Li X R, Liu J H, Fang Q Z 2025 Chin. J. Lasers. 52 1309002Google Scholar

    [9]

    金治成, 贾可, 李涵鑫, 许昌源, 王文润, 周记 2025 计算机技术与发展 预出版

    Jin Z C, Jia K, Li H X, Xu C Y, Wang W R, Zhou J 2025 Comput. Technol. Dev. in Press

    [10]

    王燕, 王振宇 2024 兰州理工大学学报 50 87

    Wang Y, Wang Z Y 2024 J. Lanzhou Univ. Technol. 50 87

    [11]

    丁亚茜, 贾明, 顾劭忆, 邱佳欣, 陈光辉 2024 中国激光 51 1901011Google Scholar

    Ding Y X, Jia M, Gu S Y, Qiu J X, Chen G H 2024 Chin. J. Lasers. 51 1901011Google Scholar

    [12]

    蔡冰涛, 黄文涛, 肖力敏, 陈小宝 2025 中国激光 52 1006004Google Scholar

    Cai B T, Huang W T, Xiao L M, Chen X B 2025 Chin. J. Lasers. 52 1006004Google Scholar

    [13]

    姚光杰, 李家成, 刘华展, 马超杰, 洪浩, 刘开辉 2025 中国激光 52 0501006Google Scholar

    Yao G J, Li J C, Liu H Z, Ma C J, Hong H, Liu K H 2025 Chin. J. Lasers. 52 0501006Google Scholar

    [14]

    尚向军, 李叔伦, 马奔, 陈瑶, 何小武, 倪海桥, 智川 2021 物理学报 70 087801Google Scholar

    Shang X J, Li S L, Ma B, Chen Y, He X W, Ni H Q, Zhi C 2021 Acta Phys. Sin. 70 087801Google Scholar

    [15]

    侯悦, 项水英, 邹涛, 黄志权, 石尚轩, 郭星星, 张雅慧, 郑凌, 郝跃 2025 物理学报 74 148701Google Scholar

    Hou Y, Xiang S Y, Zou T, Huang Z Q, Shi S X, Guo X X, Zhang Y H, Zheng L, Hao Y 2025 Acta Phys. Sin. 74 148701Google Scholar

    [16]

    伍静, 崔春凤, 欧阳滔, 唐超 2023 物理学报 72 047201Google Scholar

    Wu J, Cui C F, Ou Y T, Tang C 2023 Acta Phys. Sin. 72 047201Google Scholar

    [17]

    刘圆凯, 侯云龙, 杨宜霖, 侯刘敏, 李渊华, 林佳, 陈险峰 2025 物理学报 74 140303Google Scholar

    Liu Y K, Hou Y L, Yang Y L, Hou L M, Li Y H, Lin J, Chen X F 2025 Acta Phys. Sin. 74 140303Google Scholar

    [18]

    覃俭 2023 物理学报 72 050302Google Scholar

    Qin J 2023 Acta Phys. Sin. 72 050302Google Scholar

    [19]

    王翔, 周义深, 张轩阁, 陈希浩 2025 物理学报 74 084202Google Scholar

    Wang X, Zhou Y S, Zhang X G, Chen X H 2025 Acta Phys. Sin. 74 084202Google Scholar

    [20]

    卫祎昕, 杨昌钢, 卫阿敏, 张国峰, 秦成兵, 陈瑞云, 胡建勇, 肖连团, 贾锁堂 2025 物理学报 74 064208Google Scholar

    Wei Y X, Yang C G, Wei A M, Zhang G F, Qin C B, Chen R Y, Hu J Y, Xiao L T, Jia S T 2025 Acta Phys. Sin. 74 064208Google Scholar

  • [1] 胡生润, 季学强, 王进进, 阎结昀, 张天悦, 李培刚. 基于Ga2O3-SiC-Ag多层结构的介电常数近零超低开关阈值光学双稳态器件. 物理学报, doi: 10.7498/aps.73.20231534
    [2] 郭绮琪, 陈溢杭. 基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应. 物理学报, doi: 10.7498/aps.70.20210290
    [3] 李海鹏, 周佳升, 吉炜, 杨自强, 丁慧敏, 张子韬, 沈晓鹏, 韩奎. 边界对石墨烯量子点非线性光学性质的影响. 物理学报, doi: 10.7498/aps.70.20201643
    [4] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, doi: 10.7498/aps.69.20200456
    [5] 白瑞雪, 杨珏晗, 魏大海, 魏钟鸣. 低维半导体材料在非线性光学领域的研究进展. 物理学报, doi: 10.7498/aps.69.20200206
    [6] 徐昕, 金雪莹, 胡晓鸿, 黄新宁. 光学微腔中倍频光场演化和光谱特性. 物理学报, doi: 10.7498/aps.69.20191294
    [7] 邓俊鸿, 李贵新. 非线性光学超构表面. 物理学报, doi: 10.7498/aps.66.147803
    [8] 陈卫军, 卢克清, 惠娟利, 张宝菊. 饱和非线性介质中艾里-高斯光束的传输与交互作用. 物理学报, doi: 10.7498/aps.65.244202
    [9] 徐地虎, 胡青, 彭茹雯, 周昱, 王牧. 金属微结构纳米线中等离激元传播和分光特性. 物理学报, doi: 10.7498/aps.64.097803
    [10] 张龙, 韩海年, 侯磊, 于子蛟, 朱政, 贾玉磊, 魏志义. 基于光子晶体光纤和拉锥式单模光纤的超连续光谱产生的实验研究. 物理学报, doi: 10.7498/aps.63.194208
    [11] 高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛. Z箍缩Al等离子体X辐射谱线的分离及电子温度的提取. 物理学报, doi: 10.7498/aps.63.095201
    [12] 陆晶晶, 冯苗, 詹红兵. 氧化石墨烯/壳聚糖复合薄膜材料的制备及其非线性光限幅效应的研究. 物理学报, doi: 10.7498/aps.62.014204
    [13] 苏倩倩, 张国文, 蒲继雄. 高斯光束经表面有缺陷的厚非线性介质的传输特性. 物理学报, doi: 10.7498/aps.61.144208
    [14] 赵磊, 隋展, 朱启华, 张颖, 左言磊. 分步傅里叶法求解广义非线性薛定谔方程的改进及精度分析. 物理学报, doi: 10.7498/aps.58.4731
    [15] 黄晓明, 陶丽敏, 郭雅慧, 高 云, 王传奎. 一种新型双共轭链分子非线性光学性质的理论研究. 物理学报, doi: 10.7498/aps.56.2570
    [16] 杨 光, 陈正豪. 掺Ag纳米颗粒的BaTiO3复合薄膜的非线性光学特性. 物理学报, doi: 10.7498/aps.56.1182
    [17] 梁小蕊, 赵 波, 周志华. 几种香豆素衍生物分子的二阶非线性光学性质的从头算研究. 物理学报, doi: 10.7498/aps.55.723
    [18] 张明昕, 吴克琛, 刘彩萍, 韦永勤. 密度泛函交换关联势与过渡金属化合物光学非线性的计算研究. 物理学报, doi: 10.7498/aps.54.1762
    [19] 周文远, 田建国, 臧维平, 张春平, 张光寅, 王肇圻. 厚非线性介质瞬态热光非线性效应的研究. 物理学报, doi: 10.7498/aps.51.2623
    [20] 马瑾怡, 邱锡钧. 强光场中电子系统与多光子的相互作用. 物理学报, doi: 10.7498/aps.50.416
计量
  • 文章访问数:  369
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-20
  • 修回日期:  2025-09-02
  • 上网日期:  2025-09-05

/

返回文章
返回