-
Due to the coupling of photons with the electrons at a metal-dielectric interface, surface plasmons (SPs) can achieve extreflely small wavelengths and highly localized electromagnetic fields. Hence, plasmonics with subwavelength characteristics can break the diffraction limit of light, and thus has aroused great interest for decades. The SP-inspired reflearch, in the application respect, includes extraordinary optical transmission, surface enhanced Raman spectroscopy, sub-wavelength imaging, electromagnetic induced transparency, perfect absorbers, polarization switches, etc.; and in the fundamental respect, includes plasmon-mediated light-matter interaction, such as plasmonic lasing, plasmon-exciton strong coupling, etc.#br#Recently a series of studies has been performed to push the dimensions of plasmonic devices into deep subwavelength by using nanowires. The chemically synthesized metallic nanowires have good plasmonic properties such as low damping. The reported silver nanowire structures show great potential as plasmonic devices for communication and computation. Now we develop the nanostructured metal wires for plasmonic splitters based on the following considerations. One is that we introduce cascade nano-gratings on a metallic nanowire, enabling a single nanowire to act as a spectral splitting device at subwavelength; and the other is that we use silicon as a substrate for the metallic nanowire, making the plasmonic nanowire device compatible with silicon based technologies.#br#In this paper, we continue and develop our previous work on position-sensitive spectral splitting with a plasmonic nanowire on silicon chip (see Scientific Reports (2013) 3 3095). The three parts are organized as follows. In the first part, we derive analytically the dispersion relation of the SPs in a suspended silver nanowire based on Maxwell equations. In the second part, we placed a silver nanowire in the silicon substrate, and use the finite-element method (FEM) to obtain the dispersion relation of the SPs for the practical applications. The calculations show that the SP mode can be confined better in this system, howbeit with larger loss. Starting from the dispersion relation, we then calculate the mode area, the propagation length and the effective index of the SP modes, with respect to the nanowire dimension and the substrate materials. It is shown that a thinner nanowire has smaller mode area and a higher-index substrate induces larger loss. We also perform the finite-difference time-domain (FDTD) simulation to investigate the electromagnetic field distribution in this system. We find that the SP mode is mainly confined around the top surface of the nanowire, and in the crescent gap between the nanowire and the substrate. In the third part, we demonstrate both experimentally and theoretically that the silver nanowire with two cascaded gratings can act as a spectral splitter for sorting/demultiplexing photons at different spacial locations. The geometry of the grating is optimized by rigorous coupled wave analysis (RCWA) calculation. The carefully designed gratings allow the SPs with the frequencies in the plasmonic band and prohibit the SPs with the frequencies in the plasmonics bandgap. Those prohibited SPs areflemitted out through a single groove in front of each grating. Both the detected images and the measured optical spectra demonstrate that the SPs with different colors can be emitted at different grooves along a single nanowire. Thus the structured metal nanowire shows potential applications in position-sensitive spectral splitting and optical signal processing on a nanoscale, and provides a unique approach to integrating nanophotonics with microelectronics.
-
Keywords:
- plasmonics /
- nanostructured metal wires /
- spectra splitting
[1] Ritchie R H 1957 Phys. Rev. 106 874
[2] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824
[3] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667
[4] Tang Z H, Peng R W, Wang Z, Wu X, Bao Y J, Wang Q J, Zhang Z J, Sun W H, Wang M 2007 Phys. Rev. B 76 195405
[5] Bao Y J, Peng R W, Shu D J, Wang M, Lu X, Shao J, Lu W, Ming N B 2008 Phys. Rev. Lett. 101 087401
[6] Gao F, Li D, Peng R W, Hu Q, Wei K, Wang Q J, Zhu Y Y, Wang M 2009 Appl. Phys. Lett. 95 011104
[7] Li D, Qin L, Xiong X, Peng R W, Hu Q, Ma G B, Zhou H S, Wang M 2011 Opt. Express 19 22942
[8] Xu H X, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357
[9] Xu H X, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318
[10] Garcia-Vidal F J, Pendry J B 1996 Phys. Rev. Lett. 771163
[11] Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534
[12] Kawata S, Inouye Y, Verma P 2009 Nat. Photon. 3 388
[13] Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401
[14] Qin L, Zhang K, Peng R W, Xiong X, Zhang W, Huang X R, Wang M 2013 Phys. Rev. B 87 125136
[15] Zhang K, Wang C, Qin L, Peng R W, Xu D H, Xiong X, Wang M 2014 Opt. Lett. 39 3539
[16] Xiong X, Sun W H, Bao Y J, Peng R W, Wang M, Sun C, Lu X, Shao J, Li Z F, Ming N B 2009 Phys. Rev. B 80 201105
[17] Xiong X, Sun W H, Bao Y J, Wang M, Peng R W, Sun C, Lu X, Shao J, Li Z F, Ming N B 2010 Phys. Rev. B 81 075119
[18] Xiong X, Wang Z W, Fu S J, Wang M, Peng R W, Hao X P, Sun C 2011 Appl. Phys. Lett. 99 181905
[19] Jiang S C, Xiong X, Sarriugarte P, Jiang S W, Yin X B, Wang Y, Peng R W, Wu D, Hillenbrand R, Zhang X, Wang M 2013 Phys. Rev. B 88 161104
[20] Xiong X, Xue Z H, Meng C, Jiang S C, Hu Y H, Peng R W, Wang M 2013 Phys. Rev. B 88 115105
[21] Xiong X, Jiang S C, Hu Y H, Peng R W, Wang M 2013 Adv. Mater. 25 3994
[22] Jiang S C, Xiong X, Hu Y S, Hu Y H, Ma G B, Peng R W, Sun C, Wang M 2014 Phys. Rev. X 4 021026
[23] Gonzalez M U, Weeber J C, Baudrion A L, Dereux A, Stepanov A L, Krenn J R, Devaux E, Ebbesen T W 2006 Phys. Rev. B 73 155416
[24] Xu D H, Zhang K, Shao M R, Wu H W, Fan R H, Peng R W, Wang M 2014 Opt. Express 22 25700
[25] Zhang Z J, Peng R W, Wang Z, Gao F, Huang X R, Sun W H, Wang Q J, Wang M 2008 Appl. Phys. Lett. 93 171110
[26] Kosako T, kadoya Y, Hofmann H F 2010 Nat. Photon. 4 312
[27] Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R, Hulst N F V 2010 Science 329 930
[28] Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629
[29] Ma R M, Oulton R F, Sorger V J, Bartal G, Zhang X 2011 Nat. Mater. 10 110
[30] Huang X R, Peng R W, Fan R H 2010 Phys. Rev. Lett. 105 243901
[31] Alu A, D’Aguanno G, Mattiucci N, Bloemer M J 2011 Phys. Rev. Lett. 106 123902
[32] Fan R H, Peng R W, Huang X R, Li J. Liu Y M, Hu Q, Wang M, Zhang X 2012 Adv. Mater. 24 1980
[33] Fan R H, Zhu L H, Peng R W, Huang X R, Qi D X, Ren X P, Hu Q, Wang M 2013 Phys. Rev. B 87 195444
[34] Fan R H, Li J, Peng R W, Huang X R, Qi D X, Xu D H, Ren X P, Wang M 2013 Appl. Phys, Lett. 102 171904
[35] Shen Y C, Ye D X, Celanovic I, Johnson S G, Joannopoulos J D, Soljacic M 2014 Science 343 1499
[36] Ren X P, Fan R H, Peng R W, Huang X R, Xu D H, Zhou Y, Wang M 2015 Phys. Rev. B 91 045111
[37] Fan R H, Zhou Y, Ren X P, Peng R W, Jiang S C, Xu D H, Xiong X, Huang X R, Wang M 2014 Adv. Mater. 27 1201
[38] Cubukcu E, Zhang S, Park Y S, Bartal G, Zhang X 2009 Appl. Phys. Lett. 95 043113
[39] Chang C C, Sharma Y D, Kim Y S, Bur J A, Shenoi R V, Krishna S, Huang D H, Lin S Y 2010 Nano Lett. 10 1704
[40] Alu A, Engheta N 2006 Phys. Rev. B 74 205436
[41] Compaijen P J, Malyshev V A, Knoester J 2013 Phys. Rev. B 87 205437
[42] Wei H, Wang Z X, Tian X R, Kall M, Xu H X 2011 Nat. Comm. 2 387
[43] Wei H, Li Z P, Tian X R, Wang Z X, Cong F Z, Liu N, Zhang S P, Nordlander P, Halas N J, Xu H X 2011 Nano Lett. 11 471
[44] Fu Y L, Hu X Y, Lu C C, Yue S, Yang H, Gong Q H 2012 Nano Lett. 12 5784
[45] Dreflet A, Koller D, Hohenau A, Leitner A, Aussenegg F R, Krenn J R 2007 Nano Lett. 7 1697
[46] Fang Y R, Li Z P, Huang Y Z, Zhang S P, Nordlander P, Halas N J, Xu H X 2010 Nano Lett. 10 1950
[47] Wang G X, Lu H, Liu X M, Mao D, Duan L N 2011 Opt. Express 19 3513
[48] Lerman G M, Yanai A, Levy U 2009 Nano Lett. 9 2139
[49] Li L, Li T, Wang S M, Zhang C, Zhu S N 2011 Phys. Rev. Lett. 107 126804
[50] Li L, Li T, Wang S M, Zhu S N 2013 Phys. Rev. Lett. 110 046807
[51] Falk A L, Koppens F H L, Yu C L, Kang K, Snapp N D L, Akimov A V, Jo M H, Lukin M D, Park H K 2009 Nat. Phys. 5 475
[52] Hu Q, Xu D H, Zhou Y, Peng R W, Fan R H, Fang N X, Wang Q J. Huang X R, Wang M 2013 Sci. Rep. 3 3095
[53] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer) pp25-34
[54] Bozhevolnyi S I 2009 Plasmonic Nanoguides and Circuits (Singapore: Pan Stanford Publishing Pte. Ltd.) pp1-30
[55] Holmgaard T, Bozhevolnyi S I 2007 Phys. Rev. B 75 245405
[56] Krasavin A V, Zayats A V 2008 Phys. Rev. B 78 045425
[57] Gramotnev D K, Pile D F P 2004 Appl. Phys. Lett. 85 6323
[58] Jin E X, Xu X F 2005 Appl. Phys. Lett. 86 111106
[59] Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nat. Photon. 2 496
[60] Yang X D, Liu Y M, Oulton R F, Yin X B, Zhang X 2011 Nano Lett. 11 321
[61] Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R, Krenn J R 2005 Phys. Rev. Lett. 95 257403
[62] Guo X, Qiu M, Bao J M, Wiley B J, Yang Q, Zhang X N, Ma Y G, Yu H K, Tong L M 2009 Nano Lett. 9 4515
[63] Zhang S P, Wei H, Bao K, Hakanson U, Halas N J, Nordlander P, Xu H X 2011 Phys. Rev. Lett. 107 096801
[64] Wu X Q, Xiao Y, Meng C, Zhang X N, Yu S L, Wang Y P, Yang C X, Guo X, Ning C Z, Tong L M 2013 Nano Lett. 13 5654
[65] Yu H K, Fang W, Wu X Q, Lin X, Tong L M, Liu W T, Wang A M, Shen Y R 2014 Nano Lett. 14 3487
[66] Wu Z, Li H M, Xiong X, Ma G B, Wang M, Peng R W, Ming N B 2009 Appl. Phys. Lett. 94 041120
[67] Vahala K J 2003 Nature 424 839
[68] Min B, Ostby E, Sorger V, Ulin-Avila E, Yang L, Zhang X, Vahala K 2009 Nature 457 455
[69] Stratton J A 1941 Electromagnetic Theory(New York: McGraw-Hill Book Company Inc) pp349-361
[70] Moharam M G, Grann E B, Pommet D A 1995 J. Opt. Soc. Am. A 12 1068
[71] Rakic A D, Djurisic A B, Elazar J M, Majewski M L 1998 Appl. Opt. 37 5271
[72] Palik E D 1998 Handbook of Optical Constants of Solids (San Diego: Academic Press)
[73] Li Z P, Bao K, Fang Y R, Guan Z Q, Halas N J, Nordlander P, Xu H X 2010 Phys. Rev. B 82 241402
[74] Zhang S P, Xu H X 2012 ACS Nano 6 8128
[75] Wei H, Zhang S P, Tian X R, Xu H X 2013 PNAS 110 4494
[76] Frankel M Y, Esman R D 1998 J. Lightwave Technol. 16 859
[77] Nguyen H G, Cabon B, Poette J, Yu Z, Fonjallaz P Y 2009 IEEE RWS 590
-
[1] Ritchie R H 1957 Phys. Rev. 106 874
[2] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824
[3] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667
[4] Tang Z H, Peng R W, Wang Z, Wu X, Bao Y J, Wang Q J, Zhang Z J, Sun W H, Wang M 2007 Phys. Rev. B 76 195405
[5] Bao Y J, Peng R W, Shu D J, Wang M, Lu X, Shao J, Lu W, Ming N B 2008 Phys. Rev. Lett. 101 087401
[6] Gao F, Li D, Peng R W, Hu Q, Wei K, Wang Q J, Zhu Y Y, Wang M 2009 Appl. Phys. Lett. 95 011104
[7] Li D, Qin L, Xiong X, Peng R W, Hu Q, Ma G B, Zhou H S, Wang M 2011 Opt. Express 19 22942
[8] Xu H X, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357
[9] Xu H X, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318
[10] Garcia-Vidal F J, Pendry J B 1996 Phys. Rev. Lett. 771163
[11] Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534
[12] Kawata S, Inouye Y, Verma P 2009 Nat. Photon. 3 388
[13] Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401
[14] Qin L, Zhang K, Peng R W, Xiong X, Zhang W, Huang X R, Wang M 2013 Phys. Rev. B 87 125136
[15] Zhang K, Wang C, Qin L, Peng R W, Xu D H, Xiong X, Wang M 2014 Opt. Lett. 39 3539
[16] Xiong X, Sun W H, Bao Y J, Peng R W, Wang M, Sun C, Lu X, Shao J, Li Z F, Ming N B 2009 Phys. Rev. B 80 201105
[17] Xiong X, Sun W H, Bao Y J, Wang M, Peng R W, Sun C, Lu X, Shao J, Li Z F, Ming N B 2010 Phys. Rev. B 81 075119
[18] Xiong X, Wang Z W, Fu S J, Wang M, Peng R W, Hao X P, Sun C 2011 Appl. Phys. Lett. 99 181905
[19] Jiang S C, Xiong X, Sarriugarte P, Jiang S W, Yin X B, Wang Y, Peng R W, Wu D, Hillenbrand R, Zhang X, Wang M 2013 Phys. Rev. B 88 161104
[20] Xiong X, Xue Z H, Meng C, Jiang S C, Hu Y H, Peng R W, Wang M 2013 Phys. Rev. B 88 115105
[21] Xiong X, Jiang S C, Hu Y H, Peng R W, Wang M 2013 Adv. Mater. 25 3994
[22] Jiang S C, Xiong X, Hu Y S, Hu Y H, Ma G B, Peng R W, Sun C, Wang M 2014 Phys. Rev. X 4 021026
[23] Gonzalez M U, Weeber J C, Baudrion A L, Dereux A, Stepanov A L, Krenn J R, Devaux E, Ebbesen T W 2006 Phys. Rev. B 73 155416
[24] Xu D H, Zhang K, Shao M R, Wu H W, Fan R H, Peng R W, Wang M 2014 Opt. Express 22 25700
[25] Zhang Z J, Peng R W, Wang Z, Gao F, Huang X R, Sun W H, Wang Q J, Wang M 2008 Appl. Phys. Lett. 93 171110
[26] Kosako T, kadoya Y, Hofmann H F 2010 Nat. Photon. 4 312
[27] Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R, Hulst N F V 2010 Science 329 930
[28] Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629
[29] Ma R M, Oulton R F, Sorger V J, Bartal G, Zhang X 2011 Nat. Mater. 10 110
[30] Huang X R, Peng R W, Fan R H 2010 Phys. Rev. Lett. 105 243901
[31] Alu A, D’Aguanno G, Mattiucci N, Bloemer M J 2011 Phys. Rev. Lett. 106 123902
[32] Fan R H, Peng R W, Huang X R, Li J. Liu Y M, Hu Q, Wang M, Zhang X 2012 Adv. Mater. 24 1980
[33] Fan R H, Zhu L H, Peng R W, Huang X R, Qi D X, Ren X P, Hu Q, Wang M 2013 Phys. Rev. B 87 195444
[34] Fan R H, Li J, Peng R W, Huang X R, Qi D X, Xu D H, Ren X P, Wang M 2013 Appl. Phys, Lett. 102 171904
[35] Shen Y C, Ye D X, Celanovic I, Johnson S G, Joannopoulos J D, Soljacic M 2014 Science 343 1499
[36] Ren X P, Fan R H, Peng R W, Huang X R, Xu D H, Zhou Y, Wang M 2015 Phys. Rev. B 91 045111
[37] Fan R H, Zhou Y, Ren X P, Peng R W, Jiang S C, Xu D H, Xiong X, Huang X R, Wang M 2014 Adv. Mater. 27 1201
[38] Cubukcu E, Zhang S, Park Y S, Bartal G, Zhang X 2009 Appl. Phys. Lett. 95 043113
[39] Chang C C, Sharma Y D, Kim Y S, Bur J A, Shenoi R V, Krishna S, Huang D H, Lin S Y 2010 Nano Lett. 10 1704
[40] Alu A, Engheta N 2006 Phys. Rev. B 74 205436
[41] Compaijen P J, Malyshev V A, Knoester J 2013 Phys. Rev. B 87 205437
[42] Wei H, Wang Z X, Tian X R, Kall M, Xu H X 2011 Nat. Comm. 2 387
[43] Wei H, Li Z P, Tian X R, Wang Z X, Cong F Z, Liu N, Zhang S P, Nordlander P, Halas N J, Xu H X 2011 Nano Lett. 11 471
[44] Fu Y L, Hu X Y, Lu C C, Yue S, Yang H, Gong Q H 2012 Nano Lett. 12 5784
[45] Dreflet A, Koller D, Hohenau A, Leitner A, Aussenegg F R, Krenn J R 2007 Nano Lett. 7 1697
[46] Fang Y R, Li Z P, Huang Y Z, Zhang S P, Nordlander P, Halas N J, Xu H X 2010 Nano Lett. 10 1950
[47] Wang G X, Lu H, Liu X M, Mao D, Duan L N 2011 Opt. Express 19 3513
[48] Lerman G M, Yanai A, Levy U 2009 Nano Lett. 9 2139
[49] Li L, Li T, Wang S M, Zhang C, Zhu S N 2011 Phys. Rev. Lett. 107 126804
[50] Li L, Li T, Wang S M, Zhu S N 2013 Phys. Rev. Lett. 110 046807
[51] Falk A L, Koppens F H L, Yu C L, Kang K, Snapp N D L, Akimov A V, Jo M H, Lukin M D, Park H K 2009 Nat. Phys. 5 475
[52] Hu Q, Xu D H, Zhou Y, Peng R W, Fan R H, Fang N X, Wang Q J. Huang X R, Wang M 2013 Sci. Rep. 3 3095
[53] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer) pp25-34
[54] Bozhevolnyi S I 2009 Plasmonic Nanoguides and Circuits (Singapore: Pan Stanford Publishing Pte. Ltd.) pp1-30
[55] Holmgaard T, Bozhevolnyi S I 2007 Phys. Rev. B 75 245405
[56] Krasavin A V, Zayats A V 2008 Phys. Rev. B 78 045425
[57] Gramotnev D K, Pile D F P 2004 Appl. Phys. Lett. 85 6323
[58] Jin E X, Xu X F 2005 Appl. Phys. Lett. 86 111106
[59] Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nat. Photon. 2 496
[60] Yang X D, Liu Y M, Oulton R F, Yin X B, Zhang X 2011 Nano Lett. 11 321
[61] Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R, Krenn J R 2005 Phys. Rev. Lett. 95 257403
[62] Guo X, Qiu M, Bao J M, Wiley B J, Yang Q, Zhang X N, Ma Y G, Yu H K, Tong L M 2009 Nano Lett. 9 4515
[63] Zhang S P, Wei H, Bao K, Hakanson U, Halas N J, Nordlander P, Xu H X 2011 Phys. Rev. Lett. 107 096801
[64] Wu X Q, Xiao Y, Meng C, Zhang X N, Yu S L, Wang Y P, Yang C X, Guo X, Ning C Z, Tong L M 2013 Nano Lett. 13 5654
[65] Yu H K, Fang W, Wu X Q, Lin X, Tong L M, Liu W T, Wang A M, Shen Y R 2014 Nano Lett. 14 3487
[66] Wu Z, Li H M, Xiong X, Ma G B, Wang M, Peng R W, Ming N B 2009 Appl. Phys. Lett. 94 041120
[67] Vahala K J 2003 Nature 424 839
[68] Min B, Ostby E, Sorger V, Ulin-Avila E, Yang L, Zhang X, Vahala K 2009 Nature 457 455
[69] Stratton J A 1941 Electromagnetic Theory(New York: McGraw-Hill Book Company Inc) pp349-361
[70] Moharam M G, Grann E B, Pommet D A 1995 J. Opt. Soc. Am. A 12 1068
[71] Rakic A D, Djurisic A B, Elazar J M, Majewski M L 1998 Appl. Opt. 37 5271
[72] Palik E D 1998 Handbook of Optical Constants of Solids (San Diego: Academic Press)
[73] Li Z P, Bao K, Fang Y R, Guan Z Q, Halas N J, Nordlander P, Xu H X 2010 Phys. Rev. B 82 241402
[74] Zhang S P, Xu H X 2012 ACS Nano 6 8128
[75] Wei H, Zhang S P, Tian X R, Xu H X 2013 PNAS 110 4494
[76] Frankel M Y, Esman R D 1998 J. Lightwave Technol. 16 859
[77] Nguyen H G, Cabon B, Poette J, Yu Z, Fonjallaz P Y 2009 IEEE RWS 590
计量
- 文章访问数: 7131
- PDF下载量: 881
- 被引次数: 0