搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米尺度势能与空化效应协同作用下汽-液相变的机理研究

刘仁杰 李玉秀 陈颖 丁瑜

引用本文:
Citation:

纳米尺度势能与空化效应协同作用下汽-液相变的机理研究

刘仁杰, 李玉秀, 陈颖, 丁瑜

Mechanism of vapor-liquid phase transition under synergistic action of nanoscale potential energy and cavitation

LIU Renjie, LI Yuxiu, CHEN Ying, DING Yu
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 纳米尺度下液体的蒸发因微观效应的影响而显著增强, 其速率甚至超过经典赫兹-克努森方程的预测上限. 这一特性使纳米液体蒸发在太阳能界面蒸发、电子散热及微流控等领域展现出重要应用价值. 然而, 现有研究多聚焦于单一微观效应的影响, 对多种效应协同作用机制的认识仍显不足. 为了准确地描述纳米尺度下液体的相变行为, 本研究以液氩为对象, 系统探讨了纳米尺度下液氩的势能与空化效应协同作用对液氩蒸发的影响机制. 采用分子动力学模拟研究在不同固-液相互作用强度的纳米通道内液氩的蒸发, 结果表明固-液相互作用强度增大使液氩势能减小, 蒸发能垒增大理论上抑制其蒸发. 但由此所形成的毛细压力诱导液氩内部负压而形成的空化效应增大了液氩的蒸发面积, 进而促进液氩的蒸发, 并且还伴随着蒸发模式的转变. 结果表明, 在 $ {\varepsilon }_{\mathrm{s}\mathrm{l}}=0.5{\varepsilon }_{\mathrm{l}\mathrm{l}} $, $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={\varepsilon }_{\mathrm{l}\mathrm{l}} $, $ {\varepsilon }_{\mathrm{s}\mathrm{l}}=2{\varepsilon }_{\mathrm{l}\mathrm{l}} $, $ {\varepsilon }_{\mathrm{s}\mathrm{l}}=4{\varepsilon }_{\mathrm{l}\mathrm{l}} $四种不同固-液相互作用强度的通道中, 液氩的蒸发速率依次为3.95×10–14, 3.49×10–14, 3.02×10–14, 2.44×10–14 kg/s, 可得出在中等固-液相互作用强度$ {\varepsilon }_{\mathrm{s}\mathrm{l}}={\varepsilon }_{\mathrm{l}\mathrm{l}} $下, 二者达到最佳的协同效果, 蒸发速率达到最大值.
    Liquid evaporation on a nanoscale is significantly strengthened by microscopic effects, with its rate even exceeding the predicted upper limit of the classical Hertz-Knudsen equation. This property makes nanoscale liquid evaporation highly valuable for applications in solar-driven interfacial evaporation, electronics cooling, and microfluidics. However, existing research predominantly focuses on the influence of individual microscopic effects, leaving the synergistic mechanisms of multiple effects to be poorly understood. To deeply reveal the microscopic mechanism of liquid phase change on a nanoscale, this study employs liquid argon as a model system to systematically investigate the synergistic effect of potential energy and cavitation on its evaporation. Using molecular dynamics simulations, we study the evaporation process of liquid argon within nanochannels characterized by different solid-liquid interaction strengths under identical temperature and time frame. The results indicate that an increase in the solid-liquid interaction strength reduces the average potential energy of liquid argon and increases the evaporation energy barrier, which theoretically should suppress the evaporation. Nevertheless, the capillary pressure induced by the increased meniscus curvature leads to negative pressure within the liquid argon, triggering a cavitation effect. This cavitation generates bubbles inside the liquid argon, which significantly increases the evaporation surface area and consequently promotes evaporation. Furthermore, the meniscus-dominated evaporation mode is gradually weakened, while the contribution from cavitation bubbles becomes increasingly pronounced. This study demonstrates that the evaporation rates of liquid argon in the four nanochannels with different interaction strengths are 3.49×10–14, 3.95×10–14, 3.02×10–14, and 2.44×10–14 kg/s, respectively. Therefore, it can be concluded that the evaporation rate does not vary linearly with the increase of solid-liquid interaction strength. On the contrary, under moderate interaction intensity, the optimal synergistic state between potential energy and the cavitation effect is achieved, thereby obtaining a maximum evaporation rate.
  • 图 1  物理模型结构示意图 (a) 立体视图; (b) 侧视图

    Fig. 1.  Schematic diagram of the physical model structure: (a) 3D view; (b) side view.

    图 2  不同的固-液相互作用强度下液氩原子数量随时间变化

    Fig. 2.  Time-dependent variation in the number of argon atoms under different solid-liquid interaction strengths.

    图 3  不同的固-液相互作用强度下液氩的蒸发速率

    Fig. 3.  Evaporation rate of liquid argon under different solid-liquid interaction strengths.

    图 4  纳米通道内液氩势能与密度分布的计算原理图

    Fig. 4.  Schematic diagram of the computational methodology for potential energy and density distributions of liquid argon in nanochannels.

    图 5  液氩原子沿通道高度方向的势能分布

    Fig. 5.  Potential energy profile of argon atoms along the channel height direction.

    图 6  液氩沿通道高度方向的密度分布

    Fig. 6.  Density profile of liquid argon along the channel height direction.

    图 7  液氩原子沿通道高度方向的势能分布云图 (a) εsl = 0.5εll; (b) εsl = εll; (c) εsl = 2εll; (d) εsl = 4εll

    Fig. 7.  Contour plots of liquid argon atomic potential energy distribution along the channel height Direction: (a) εsl = 0.5εll; (b) εsl = εll; (c) εsl = 2εll; (d) εsl = 4εll.

    图 8  固-液相互作用强度为$ {\varepsilon }_{\mathrm{s}\mathrm{l}}=0.5{\varepsilon }_{\mathrm{l}\mathrm{l}} $时, 对应时刻(a)通道内液氩的状态, 以及(b)通道内液氩压力沿通道长度方向的分布

    Fig. 8.  (a) Snapshots of liquid argon configuration within the channel and (b) corresponding pressure profile along the channel’s longitudinal (y) axis under solid-liquid interaction $ {\varepsilon }_{\mathrm{s}\mathrm{l}}=0.5{\varepsilon }_{\mathrm{l}\mathrm{l}} $.

    图 9  固-液相互作用强度为$ {\varepsilon }_{\mathrm{s}\mathrm{l}}={\varepsilon }_{\mathrm{l}\mathrm{l}} $时, 对应时刻(a)通道内液氩的状态, 以及(b)通道内液氩压力沿通道长度方向的分布

    Fig. 9.  (a) Snapshots of liquid argon configuration within the channel and (b) corresponding pressure profile along the channel’s longitudinal (y) axis under solid-liquid interaction $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={\varepsilon }_{\mathrm{l}\mathrm{l}} $.

    图 10  固-液相互作用强度为$ {\varepsilon }_{\mathrm{s}\mathrm{l}}={2\varepsilon }_{\mathrm{l}\mathrm{l}} $ 时, 对应时刻(a)通道内液氩的形态, 以及(b)通道内液氩压力沿通道长度方向的分布

    Fig. 10.  (a) Snapshots of liquid argon configuration within the channel and (b) corresponding pressure profile along the channel’s longitudinal (y) axis under solid-liquid interaction $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={2\varepsilon }_{\mathrm{l}\mathrm{l}} $.

    图 11  固-液相互作用强度为$ {\varepsilon }_{\mathrm{s}\mathrm{l}}={4\varepsilon }_{\mathrm{l}\mathrm{l}} $时, 对应时刻(a)通道内液氩的形态, 以及(b)通道内液氩压力沿通道长度方向的分布

    Fig. 11.  (a) Snapshots of liquid argon configuration within the channel and (b) corresponding pressure profile along the channel’s longitudinal (y) axis under solid-liquid interaction $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={4\varepsilon }_{\mathrm{l}\mathrm{l}} $.

    图 12  不同固-液相互作用强度条件下空化气泡溃灭前气泡内的蒸汽原子 (a) $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={\varepsilon }_{\mathrm{l}\mathrm{l}} $; (b) $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={2\varepsilon }_{\mathrm{l}\mathrm{l}} $; (c) $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={4\varepsilon }_{\mathrm{l}\mathrm{l}} $

    Fig. 12.  Vapor atoms within cavitation bubbles immediately before collapse under different solid-liquid interaction strengths: (a) $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={\varepsilon }_{\mathrm{l}\mathrm{l}} $; (b) $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={2\varepsilon }_{\mathrm{l}\mathrm{l}} $; (c) $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={4\varepsilon }_{\mathrm{l}\mathrm{l}} $.

    图 13  不同固-液相互作用强度条件下各部分的蒸发数量

    Fig. 13.  Evaporation quantities of different components under various solid-liquid interaction strengths.

    图 14  不同固-液相互作用强度条件下弯液面与空化气泡蒸发数量占比

    Fig. 14.  Proportion of evaporation quantities at meniscus and cavitation bubbles under various solid-liquid interaction strengths.

    图 15  确定液氩弯液面几何轮廓的计算原理图

    Fig. 15.  Schematic diagram of the computational methodology for determining the geometric profile of the liquid argon meniscus.

    图 16  不同固-液相互作用强度下弯液面的几何轮廓及其曲率半径 (a) $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={\varepsilon }_{\mathrm{l}\mathrm{l}} $; (b) $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={2\varepsilon }_{\mathrm{l}\mathrm{l}} $; (c) $ {\varepsilon }_{\mathrm{s}\mathrm{l}}=4{\varepsilon }_{\mathrm{l}\mathrm{l}} $

    Fig. 16.  Geometric profile of the meniscus and its radius of curvature under different solid-liquid interaction strengths: (a) $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={\varepsilon }_{\mathrm{l}\mathrm{l}} $; (b) $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={2\varepsilon }_{\mathrm{l}\mathrm{l}} $; (c) $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={4\varepsilon }_{\mathrm{l}\mathrm{l}} $.

    表 1  不同固-液相互作用强度下液氩的理论物理性质

    Table 1.  Theoretical physical properties of liquid argon under different solid-liquid interaction intensities.

    固-液势能
    强度$ {\varepsilon }_{\mathrm{s}\mathrm{l}} $
    R/nm$ \gamma $/(mN·m–1)$ {P}_{\mathrm{c}} $/bar$ {P}_{\mathrm{v}} $/bar$ {P}_{\mathrm{l}} $/bar
    $ {\varepsilon }_{\mathrm{l}\mathrm{l}} $1.259.1573.203.22–69.98
    2$ {\varepsilon }_{\mathrm{l}\mathrm{l}} $1.239.375.612.82–72.79
    4$ {\varepsilon }_{\mathrm{l}\mathrm{l}} $1.249.2474.522.99–71.53
    下载: 导出CSV
  • [1]

    Cheng H F, Hu Y A, Zhao J F 2009 Environ. Sci. Technol. 43 240Google Scholar

    [2]

    Lu W Q, Xie S H, Zhou W S, Zhang S H, Liu A L 2008 Open Environ. Sci. 2 1

    [3]

    Huang J C, Zhang Y J, Bing H J, Peng J, Dong F F, Gao J F, Arhonditsis G B 2021 Water Res. 201 117309Google Scholar

    [4]

    Tao P, Ni G, Song C Y, Shang W, Wu J B, Zhu J, Deng T 2018 Nat. Energy 31031

    [5]

    Vélez-Cordero J R, Hernandez-Cordero J 2015 Int. J. Therm. Sci. 96 12Google Scholar

    [6]

    Kashyap V, Ghasemi H 2020 J. Mater. Chem. A 8 7035Google Scholar

    [7]

    Ni G, Li G, Boriskina S V, Li H X, Yang W L, Zhang T J, Chen G 2016 Nat. Energy 1 16126Google Scholar

    [8]

    Ghasemi H, Ni G, Marconnet A M, Loomis J, Yerci S, Miljkovic N, Chen G 2014 Nat. Commun. 5 4449Google Scholar

    [9]

    Neumann O, Urban A S, Day J, Lal S, Nordlander P, Halas N J 2013 ACS nano 7 42Google Scholar

    [10]

    Dai X, Yang F, Yang R, Lee Y C, Li C 2013 Int. J. Heat Mass Transf. 64 1101Google Scholar

    [11]

    Dai X M, Yang F H, Yang R G, Huang X Y, Rigdon WA, Li X D, Li C 2014 Appl. Phys. Lett. 105 191611Google Scholar

    [12]

    Huang Z, Chen B, Mo X B, Yang X L, Yu L Y, Hu X J, Liu K 2021 Adv. Mater. Interfaces 8 2100660Google Scholar

    [13]

    Lee W C, Ronghe A, Villalobos L F, Huang S, Dakhchoune M, Mensi M, Agrawal K V 2022 ACS Nano 16 15382Google Scholar

    [14]

    Lee P S, Garimella S V 2008 Int. J. Heat Mass Transf. 51 789Google Scholar

    [15]

    Steinke M E, Kandlikar S G 2004 J. Heat Transf. 126 518Google Scholar

    [16]

    Bar-Cohen A, Sheehan J R, Rahim E 2012 Microgravity Sci. Technol. 24 1Google Scholar

    [17]

    Lee J, Mudawar I 2005 Int. J. Heat Mass Transf. 48 941Google Scholar

    [18]

    Li Y X, Alibakhshi M A, Zhao Y H, Duan C H 2017 Nano Lett. 17 4813Google Scholar

    [19]

    Fan J C, Wu H A, Wang F C 2020 Phys. Fluids 32 12001Google Scholar

    [20]

    Maroo S C, Chung J N 2011 Nanoscale Res. Lett. 6 72Google Scholar

    [21]

    Sharma S, Debenedetti P G 2012 J. Phys. Chem. B 116 13282Google Scholar

    [22]

    Pati S, Som S K, Chakraborty S 2013 Int. J. Heat Mass Transf. 64 304Google Scholar

    [23]

    Duan C H, Karnik R, Lu M C, Majumdar A 2012 Proc. Natl. Acad. Sci. U. S. A. 109 3688Google Scholar

    [24]

    Barati Farimani A, Aluru N R 2016 J. Phys. Chem. C 120 23763[25]Chandra A, Keblinski P 2020 J. Chem. Phys. 153 12

    [25]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [26]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983Google Scholar

    [27]

    Ohtomo N, Tanaka Y 1987 J. Phys. Soc. Jpn. 56 2801Google Scholar

    [28]

    梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿 2020 物理学报 69 224701Google Scholar

    Mei T, Chen Z X, Yang L, Zhu H M, Miao R C 2020 Acta Phys. Sin. 69 224701Google Scholar

    [29]

    Xie H, Xu Y Q, Zhong C 2022 Chin. Phys. B 31 114701Google Scholar

    [30]

    Doebele V, Benoit-Gonin A, Souris F 2020 Phys. Rev. Lett. 125 255701Google Scholar

    [31]

    叶学民, 张湘珊, 李明兰, 李春曦 2018 物理学报 67 114702Google Scholar

    Ye X M, Zhang X S, Li M L, Li C X 2018 Acta Phys. Sin. 67 114702Google Scholar

    [32]

    Maroo S C, Chung J N 2010 Int. J. Heat Mass Transf. 53 3335Google Scholar

  • [1] 张彦如, 高翔, 宁宏阳, 张福建, 宋云云, 张忠强, 刘珍. 微纳流固界面主动气膜减阻机理分子动力学研究. 物理学报, doi: 10.7498/aps.74.20250289
    [2] 贾宇皓, 张晓敏, 赵志鹏, 吴琼, 张林林. 超声溶栓中多气泡协同空蚀效应的数值分析. 物理学报, doi: 10.7498/aps.74.20250430
    [3] 白璞, 王登甲, 刘艳峰. 润湿性影响薄液膜沸腾传热的分子动力学研究. 物理学报, doi: 10.7498/aps.73.20232026
    [4] 张超, 布龙祥, 张智超, 樊朝霞, 凡凤仙. 丁二酸-水纳米气溶胶液滴表面张力的分子动力学研究. 物理学报, doi: 10.7498/aps.72.20222371
    [5] 朱霄龙, 陈伟, 王丰, 王正汹. 托卡马克中低频磁流体不稳定性协同作用引起快粒子输运的混合模拟研究. 物理学报, doi: 10.7498/aps.72.20230620
    [6] 赵中华, 渠广昊, 姚佳池, 闵道敏, 翟鹏飞, 刘杰, 李盛涛. 热峰作用下单斜ZrO2相变过程的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20201861
    [7] 杨刚, 郑庭, 程启昊, 张会臣. 非牛顿流体剪切稀化特性的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20202116
    [8] 陈仙, 张静, 唐昭焕. 纳米尺度下Si/Ge界面应力释放机制的分子动力学研究. 物理学报, doi: 10.7498/aps.68.20181530
    [9] 尹灵康, 徐顺, Seongmin Jeong, Yongseok Jho, 王健君, 周昕. 广义等温等压系综-分子动力学模拟全原子水的气液共存形貌. 物理学报, doi: 10.7498/aps.66.136102
    [10] 邱超, 张会臣. 正则系综条件下空化空泡形成的分子动力学模拟. 物理学报, doi: 10.7498/aps.64.033401
    [11] 王建伟, 宋亦旭, 任天令, 李进春, 褚国亮. F等离子体刻蚀Si中Lag效应的分子动力学模拟. 物理学报, doi: 10.7498/aps.62.245202
    [12] 柯川, 赵成利, 苟富均, 赵勇. 分子动力学模拟H原子与Si的表面相互作用. 物理学报, doi: 10.7498/aps.62.165203
    [13] 邱丰, 王猛, 周化光, 郑璇, 林鑫, 黄卫东. Pb液滴在Ni基底润湿铺展行为的分子动力学模拟. 物理学报, doi: 10.7498/aps.62.120203
    [14] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算. 物理学报, doi: 10.7498/aps.62.056803
    [15] 贺平逆, 吕晓丹, 赵成利, 宁建平, 秦尤敏, 苟富均. F原子与SiC(100)表面相互作用的分子动力学模拟. 物理学报, doi: 10.7498/aps.60.095203
    [16] 宁建平, 吕晓丹, 赵成利, 秦尤敏, 贺平逆, Bogaerts A., 苟富君. 样品温度对CF3+ 与Si表面相互作用影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.59.7225
    [17] 王伟, 张凯旺, 孟利军, 李中秋, 左学云, 钟建新. 多壁碳纳米管外壁高温蒸发的分子动力学模拟. 物理学报, doi: 10.7498/aps.59.2672
    [18] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.54.4836
    [19] 陈军, 经福谦, 张景琳, 陈栋泉. 冲击作用下金属表面微喷射的分子动力学模拟. 物理学报, doi: 10.7498/aps.51.2386
    [20] 张超, 吕海峰, 张庆瑜. 低能Pt原子与Pt(111)表面相互作用的分子动力学模拟. 物理学报, doi: 10.7498/aps.51.2329
计量
  • 文章访问数:  256
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-13
  • 修回日期:  2025-08-14
  • 上网日期:  2025-09-17

/

返回文章
返回