搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CNN-Transformer结合衍射的分数阶轨道角动量模态识别

周允城 张荣香 刘涛 毕慧聪 侯芳 王新宇

引用本文:
Citation:

基于CNN-Transformer结合衍射的分数阶轨道角动量模态识别

周允城, 张荣香, 刘涛, 毕慧聪, 侯芳, 王新宇
cstr: 32037.14.aps.74.20251033

Recognition of fractional orbital angular momentum modes based on convolutional neural network-transformer model combined with triangular diffraction

ZHOU Yuncheng, ZHANG Rongxiang, LIU Tao, BI Huicong, HOU Fang, WANG Xinyu
cstr: 32037.14.aps.74.20251033
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 利用分数阶涡旋光束(fractional vortex beams, FVBs)作为信息载体可显著提高通信系统容量, 但由于相邻分数阶轨道角动量(fractional orbital angular momentum, FOAM)模态之间的间隔差异较小, 使得FVBs极易受到大气湍流影响, 因此精确地测量失真的FOAM模态对实际基于FVBs的通信系统而言至关重要. 本文提出了一种基于卷积神经网络-Transformer混合架构的双通道深度学习模型, 通过学习并融合FVBs光强分布与其衍射图样的互补特征信息, 实现对大气湍流环境下FOAM模态的有效识别. 结果表明, 在1000 m传输距离之内, 本文构建模型在弱、中湍流强度下识别101个FOAM模态的准确率可达100%, 强湍流时也能达到98.12%, 并且在未知湍流强度下也表现出良好的泛化能力, 为准确识别FOAM模态提供了一种新方法.
    Utilizing fractional vortex beams (FVBs) as information carriers can significantly enhance the capacity of communication systems. However, the small gap difference between adjacent fractional orbital angular momentum (FOAM) modes makes FVBs highly sensitive to atmospheric turbulence. Therefore, precise measurement of distorted FOAM modes is crucial for practical FVBs-based communication systems. To fully utilize the beam intensity information and the triangular diffraction pattern information, we propose a dual-channel deep learning model with a hybrid architecture combining convolutional neural network (CNN) and vision transformer (ViT). The beam intensity information is extracted using the CNN, while the diffraction pattern information is extracted using the ViT. Then, by combining the complementary feature information from the intensity distribution of FVBs and their triangular diffraction patterns, this model can effectively identify the FOAM modes. The results show that the proposed model only requires a relatively small number of samples to reach convergence, namely 100 sets of data under weak turbulence and 400 sets of data under strong turbulence. Moreover, within a transmission distance of 1000 m, the proposed model can identify 101 FOAM modes with a mode spacing of 0.1 with an accuracy of 100% under weak and moderate turbulences, and maintains 98.12% accuracy under strong turbulence. Furthermore, the model can expand the detection range of turbulence intensity with only a minimal loss in accuracy, exhibiting strong generalization ability under unknown atmospheric turbulence strengths, thus providing a novel approach for accurately identifying FOAM modes.
      通信作者: 张荣香, zrx@hbu.edu.cn ; 刘涛, taoliu@ncepu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62071180)和河北省光电信息材料实验室绩效补贴基金项目(批准号: 22567634H)资助的课题.
      Corresponding author: ZHANG Rongxiang, zrx@hbu.edu.cn ; LIU Tao, taoliu@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62071180) and the Hebei Province Optoelectronic Information Materials Laboratory Performance Subsidy Fund Project, China (Grant No. 22567634H).
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Lei T, Zhang M, Li Y R, Jia P, Liu G N, Xu X G, Li Z H, Min C J, Lin J, Yu C Y, Niu H B, Yuan X C 2015 Light Sci. Appl. 4 e257Google Scholar

    [3]

    Fu S Y, Zhai Y W, Zhou H, Zhang J Q, Wang T L, Yin C, Gao C Q 2019 Opt. Lett. 44 4753Google Scholar

    [4]

    Nape I, Sephton B, Huang Y W, Vallés A, Forbes A 2020 APL Photonics 5 070801Google Scholar

    [5]

    Krizhevsky A, Sutskever I, Hinton G E 2017 Commun. ACM 60 84Google Scholar

    [6]

    Knutson E M, Lohani S, Danaci O, Huver S D, Glasser R T 2016 Proc. SPIE 9970 997013Google Scholar

    [7]

    Park S R, Cattell L, Nichols J M, Watnik A, Doster T, Rohde G K 2018 Opt. Express 26 4004Google Scholar

    [8]

    Fan W Q, Gao F L, Xue F C, Guo J J, Xiao Y, Gu Y J 2024 Appl. Opt. 63 982Google Scholar

    [9]

    Berry M V 2004 J. Opt. A: Pure Appl. Opt. 6 259Google Scholar

    [10]

    Phillips R L, Andrews L C 1983 Appl. Opt. 22 643Google Scholar

    [11]

    Zhao Z, Zhang R Z, Song H, Pang K, Almaiman A, Zhou H B, Song H Q, Liu C, Hu N Z, Su X Z, Minoofar A, Sasaki H, Lee D, Tur M, Molisch A F, Willner A E 2021 Sci. Rep. 11 2110Google Scholar

    [12]

    Zhu L H, Tang M M, Li H H 2021 Nanophotonics 10 2487Google Scholar

    [13]

    Bu X, Zhang Z, Chen L 2018 IEEE Antennas Wirel. Propag. Lett. 17 764Google Scholar

    [14]

    Zhou J, Zhang W H, Chen L X 2016 Appl. Phys. Lett. 108 111108Google Scholar

    [15]

    Deng D, Lin M C, Li Y, Zhao H 2019 Phys. Rev. Appl 12 014048Google Scholar

    [16]

    Liu Z W, Yan S, Liu H G, Chen X F 2019 Phys. Rev. Lett. 123 183902Google Scholar

    [17]

    Jing G Q, Chen L Z, Wang P P, Xiong W J, Huang Z B, Liu J M, Chen Y, Li Y, Fan D Y, Chen S Q 2021 Results Phys. 28 104619Google Scholar

    [18]

    郭焱, 吕恒, 丁春玲, 袁晨智, 金锐博 2025 物理学报 74 014203Google Scholar

    Guo Y, LYU H, Ding C L, Yuan C Z, Jin R B 2025 Acta Phys. Sin. 74 014203Google Scholar

    [19]

    Zhang H, Zeng J, Lu X, Wang Z, Zhao C, Cai Y 2022 Nanophotonics 11 241Google Scholar

    [20]

    Hill R J 1978 J. Fluid Mech. 88 541Google Scholar

    [21]

    Andrews L, Phillips R 2005 Laser Beam Propagation Through Random Media (Bellingham: SPIE) p135

    [22]

    Schmidt J D 2010 Numerical Simlation of Optical Wave Propagation with examples in MATLAB (Bellingham: SPIE) p149

    [23]

    杨天星, 赵生妹 2017 光学学报 37 1201001Google Scholar

    Yang T, Zhao S 2017 Acta Opt. Sin. 37 1201001Google Scholar

    [24]

    Liu Y, Sun S, Pu J, LYU B 2013 Opt. Laser Technol. 45 473Google Scholar

    [25]

    Zhao Q, Dong M, Bai Y H, Yang Y J 2020 Photonics Res. 8 745Google Scholar

    [26]

    Hu J, Shen L, Albanie S, Sun G 2020 IEEE Trans. Pattern Anal. Mach. Intell. 42 2011Google Scholar

    [27]

    Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X H, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N 2021 arXiv: 2010.11929 [cs.CV]

    [28]

    Zhang Z, Sabuncu M 2018 arXiv: 1805.07836 [cs.LG]

    [29]

    Kingma D P, Ba J 2014 arXiv: 1412.6980 [cs.LG]

    [30]

    魏冬梅, 杜乾, 刘芳宁, 王珂, 赵曰峰 2023 光学学报 43 2326001Google Scholar

    Wei D M, Du Q, Liu F N, Wang K, Zhao Y F 2023 Acta Opt. Sin. 43 2326001Google Scholar

    [31]

    Na Y, Ko D K 2021 Sci. Rep. 11 23505Google Scholar

  • 图 1  大气湍流环境下FOAM模态的传输与检测系统架构

    Fig. 1.  Architecture of propagation and detection system for FOAM modes in atmospheric turbulence.

    图 2  无湍流时FLG光束的(a)光强分布和(b)对应的衍射图样, 以及强湍流时FLG光束的(c)光强分布和(d)对应的衍射图样

    Fig. 2.  (a) Intensity distribution and (b) its corresponding diffraction pattern of FLG in the absence of turbulence, as well as (c) intensity distribution and (d) its corresponding diffraction pattern of FLG in strong turbulence

    图 3  双通道CNN-Transformer模型结构示意图

    Fig. 3.  Schematic diagram of the dual channel CNN-Transformer network structure.

    图 4  (a)不同湍流情况下的识别准确率以及(b)弱、(c)中、(d)强湍流时的混淆矩阵

    Fig. 4.  (a) Recognition accuracy of the DC-CNN-T model under different turbulence conditions, and confusion matrices for (b) weak, (c) moderate, and (d) strong turbulences.

    图 5  不同传输距离和湍流强度下的识别准确率

    Fig. 5.  Recognition accuracy for different transmission distances and turbulence intensities.

    图 6  不同模型在不同传输距离下的识别准确率

    Fig. 6.  Recognition accuracy of DC-CNN-T, CNN and Transformer models under different transmission distances.

    图 7  不同训练集下DC-CNN-T模型在各种大气湍流强度下的交叉测试结果

    Fig. 7.  Cross-test results of the DC-CNN-T model under different training sets and various atmospheric turbulence intensities.

    图 8  在1-AT和3-AT数据集下训练的 DC-CNN-T 模型的识别准确率

    Fig. 8.  Recognition accuracy of the DC-CNN-T model trained on the 1-AT and 3-AT datasets.

  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Lei T, Zhang M, Li Y R, Jia P, Liu G N, Xu X G, Li Z H, Min C J, Lin J, Yu C Y, Niu H B, Yuan X C 2015 Light Sci. Appl. 4 e257Google Scholar

    [3]

    Fu S Y, Zhai Y W, Zhou H, Zhang J Q, Wang T L, Yin C, Gao C Q 2019 Opt. Lett. 44 4753Google Scholar

    [4]

    Nape I, Sephton B, Huang Y W, Vallés A, Forbes A 2020 APL Photonics 5 070801Google Scholar

    [5]

    Krizhevsky A, Sutskever I, Hinton G E 2017 Commun. ACM 60 84Google Scholar

    [6]

    Knutson E M, Lohani S, Danaci O, Huver S D, Glasser R T 2016 Proc. SPIE 9970 997013Google Scholar

    [7]

    Park S R, Cattell L, Nichols J M, Watnik A, Doster T, Rohde G K 2018 Opt. Express 26 4004Google Scholar

    [8]

    Fan W Q, Gao F L, Xue F C, Guo J J, Xiao Y, Gu Y J 2024 Appl. Opt. 63 982Google Scholar

    [9]

    Berry M V 2004 J. Opt. A: Pure Appl. Opt. 6 259Google Scholar

    [10]

    Phillips R L, Andrews L C 1983 Appl. Opt. 22 643Google Scholar

    [11]

    Zhao Z, Zhang R Z, Song H, Pang K, Almaiman A, Zhou H B, Song H Q, Liu C, Hu N Z, Su X Z, Minoofar A, Sasaki H, Lee D, Tur M, Molisch A F, Willner A E 2021 Sci. Rep. 11 2110Google Scholar

    [12]

    Zhu L H, Tang M M, Li H H 2021 Nanophotonics 10 2487Google Scholar

    [13]

    Bu X, Zhang Z, Chen L 2018 IEEE Antennas Wirel. Propag. Lett. 17 764Google Scholar

    [14]

    Zhou J, Zhang W H, Chen L X 2016 Appl. Phys. Lett. 108 111108Google Scholar

    [15]

    Deng D, Lin M C, Li Y, Zhao H 2019 Phys. Rev. Appl 12 014048Google Scholar

    [16]

    Liu Z W, Yan S, Liu H G, Chen X F 2019 Phys. Rev. Lett. 123 183902Google Scholar

    [17]

    Jing G Q, Chen L Z, Wang P P, Xiong W J, Huang Z B, Liu J M, Chen Y, Li Y, Fan D Y, Chen S Q 2021 Results Phys. 28 104619Google Scholar

    [18]

    郭焱, 吕恒, 丁春玲, 袁晨智, 金锐博 2025 物理学报 74 014203Google Scholar

    Guo Y, LYU H, Ding C L, Yuan C Z, Jin R B 2025 Acta Phys. Sin. 74 014203Google Scholar

    [19]

    Zhang H, Zeng J, Lu X, Wang Z, Zhao C, Cai Y 2022 Nanophotonics 11 241Google Scholar

    [20]

    Hill R J 1978 J. Fluid Mech. 88 541Google Scholar

    [21]

    Andrews L, Phillips R 2005 Laser Beam Propagation Through Random Media (Bellingham: SPIE) p135

    [22]

    Schmidt J D 2010 Numerical Simlation of Optical Wave Propagation with examples in MATLAB (Bellingham: SPIE) p149

    [23]

    杨天星, 赵生妹 2017 光学学报 37 1201001Google Scholar

    Yang T, Zhao S 2017 Acta Opt. Sin. 37 1201001Google Scholar

    [24]

    Liu Y, Sun S, Pu J, LYU B 2013 Opt. Laser Technol. 45 473Google Scholar

    [25]

    Zhao Q, Dong M, Bai Y H, Yang Y J 2020 Photonics Res. 8 745Google Scholar

    [26]

    Hu J, Shen L, Albanie S, Sun G 2020 IEEE Trans. Pattern Anal. Mach. Intell. 42 2011Google Scholar

    [27]

    Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X H, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N 2021 arXiv: 2010.11929 [cs.CV]

    [28]

    Zhang Z, Sabuncu M 2018 arXiv: 1805.07836 [cs.LG]

    [29]

    Kingma D P, Ba J 2014 arXiv: 1412.6980 [cs.LG]

    [30]

    魏冬梅, 杜乾, 刘芳宁, 王珂, 赵曰峰 2023 光学学报 43 2326001Google Scholar

    Wei D M, Du Q, Liu F N, Wang K, Zhao Y F 2023 Acta Opt. Sin. 43 2326001Google Scholar

    [31]

    Na Y, Ko D K 2021 Sci. Rep. 11 23505Google Scholar

  • [1] 王正君, 陈长城, 云雄飞, 韩昭, 拓娅莉, 杜钰玺, 张欣会, 张春玲, 关晓宁, 谢江舟, 刘刚, 芦鹏飞. 深度学习与密度泛函协同优化无铅双钙钛矿太阳能电池性能. 物理学报, 2026, 75(3): . doi: 10.7498/aps.75.20251302
    [2] 安吉, 郑君, 陈民, 远晓辉, 盛政明. 利用深度学习从质子成像反演激光等离子体中的磁场分布研究. 物理学报, 2026, 75(4): . doi: 10.7498/aps.75.20251243
    [3] 张帆, 张恒, 李卓越, 文俊, 胡海豹. 基于深度学习方法的圆柱绕流实验缺失数据重构. 物理学报, 2025, 74(7): 074701. doi: 10.7498/aps.74.20241689
    [4] 李靖宇, 蒋星照, 何倩, 张逸凡, 吴桐, 姜森钟, 宋远红, 贾文柱. 深度学习代理模型的容性耦合氩等离子体流体模拟: 非对称推理与定量可信边界. 物理学报, 2025, 74(23): 235205. doi: 10.7498/aps.74.20251290
    [5] 陈鹏博, 王少义, 张文博, 温家星, 吴玉迟, 赵宗清, 王度. 基于深度学习的长波红外介电光栅加速器结构设计. 物理学报, 2025, 74(14): 144101. doi: 10.7498/aps.74.20250130
    [6] 郭焱, 吕恒, 丁春玲, 袁晨智, 金锐博. 分数阶涡旋光衍射过程的机器学习识别. 物理学报, 2025, 74(1): 014203. doi: 10.7498/aps.74.20241458
    [7] 刘鸿江, 刘逸飞, 谷付星. 基于深度学习的微纳光纤自动制备系统. 物理学报, 2024, 73(10): 104207. doi: 10.7498/aps.73.20240171
    [8] 欧秀娟, 肖奕. RNA扭转角预测的深度学习方法. 物理学报, 2023, 72(24): 248703. doi: 10.7498/aps.72.20231069
    [9] 孙涛, 袁健美. 基于深度学习原子特征表示方法的Janus过渡金属硫化物带隙预测. 物理学报, 2023, 72(2): 028901. doi: 10.7498/aps.72.20221374
    [10] 战庆亮, 葛耀君, 白春锦. 基于深度学习的流场时程特征提取模型. 物理学报, 2022, 71(7): 074701. doi: 10.7498/aps.71.20211373
    [11] 徐昭, 周昕, 白星, 李聪, 陈洁, 倪洋. 基于深度学习的相位截断傅里叶变换非对称加密系统攻击方法. 物理学报, 2021, 70(14): 144202. doi: 10.7498/aps.70.20202075
    [12] 张瑶, 张云波, 陈立. 基于深度学习的光学表面杂质检测. 物理学报, 2021, 70(16): 168702. doi: 10.7498/aps.70.20210403
    [13] 郎利影, 陆佳磊, 于娜娜, 席思星, 王雪光, 张雷, 焦小雪. 基于深度学习的联合变换相关器光学图像加密系统去噪方法. 物理学报, 2020, 69(24): 244204. doi: 10.7498/aps.69.20200805
    [14] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法. 物理学报, 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [15] 徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元. 基于深度卷积神经网络的大气湍流相位提取. 物理学报, 2020, 69(1): 014209. doi: 10.7498/aps.69.20190982
    [16] 闫玠霖, 韦宏艳, 蔡冬梅, 贾鹏, 乔铁柱. 大气湍流信道中聚焦涡旋光束轨道角动量串扰特性. 物理学报, 2020, 69(14): 144203. doi: 10.7498/aps.69.20200243
    [17] 黄宇航, 陈理想. 基于未训练神经网络的分数傅里叶变换成像. 物理学报, 2017, 1(111): 094201. doi: 10.7498/aps.73.20240050
    [18] 柯熙政, 谌娟, 杨一明. 在大气湍流斜程传输中拉盖高斯光束的轨道角动量的研究. 物理学报, 2014, 63(15): 150301. doi: 10.7498/aps.63.150301
    [19] 李晓庆, 季小玲, 朱建华. 大气湍流中光束的高阶强度矩. 物理学报, 2013, 62(4): 044217. doi: 10.7498/aps.62.044217
    [20] 李铁, 谌娟, 柯熙政, 吕宏. 大气信道中单光子轨道角动量纠缠特性的研究. 物理学报, 2012, 61(12): 124208. doi: 10.7498/aps.61.124208
计量
  • 文章访问数:  401
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-01
  • 修回日期:  2025-09-11
  • 上网日期:  2025-10-11

/

返回文章
返回