-
The key security of quantum key distribution (QKD) is guaranteed by the basic principle of quantum mechanics and it can accomplish the information-theoretic security communication combined with the one-time pad encryption. The key is usually encoded on the polarization dimension or phase dimension of a single-photon. It is considered that the birefringence effect of single-mode fiber leads to a random variation of polarization state, which would induce the bit error rate. So it is of great significance to keep the single-photon linear polarization state stable for both polarization encoding QKD system and phase encoding QKD system. By use of the single-photon polarization modulation technology, the single-photon linear polarization state periodically varies with the external modulation signal. The flicker noise is suppressed effectively, and the signal-to-noise ratio (SNR) of single-photon counting is boosted through the phase-sensitive detection with the lock-in amplifier (LIA). The error signal is generated by demodulating the modulated single photons and it is used to lock the arbitrary 1550 nm single-photon linear polarization state to the optical axis of in-line polarizer (ILP). The modulation frequency is up to 5 kHz, which could eliminate the influence of low frequency flicker noise. The LIA demodulates the single-photon pulses using 78.1 Hz filter bandwidth with the time constant being 1 ms and filter slope being 24 dB. The error signal with the SNR being 20 is shown in Fig. 3. The zero-crossing point of error signal represents the single photons linear polarization state aligned to the optical axis of ILP. The linear slope around the zero-crossing point for the polarization state angle versus the error signal amplitude is 1.267 rad/V. When the negative feedback loop does not work, the polarization drift of single-photon pulses is 0.082 rad due to the random environmental noise. However, the polarization drift of stabilized single-photon pulses is bounded within 0.0011 rad over 2000 s through a precise and dynamical control with the polarization rotator by use of the single-photon polarization modulation technology, and the corresponding Allan deviation reaches the minimal value of 6.7×10-5 at an integration time of 128 ms. The advantages for the single-photon polarization modulation technology are as follows: (i) the linear polarization state drift is compensated in real-time at the single-photon level; (ii) single frequency polarization modulation could be extended to multiple frequencies polarization modulation in order to achieve locking of multiple linear polarization states of single photons simultaneously; (iii) these 1550 nm single-photon pulses with the 0.0011 rad linear polarization state stability could be directly used as the single-photon source in either polarization encoding or phase encoding QKD system.
-
[1] Xu F H, Ma X F, Zhang Q, Lo H-K, Pan J-W 2020 Rev. Mod. Phys. 92 025002
[2] Portmann C, Renner R 2022 Rev. Mod. Phys. 94 025008
[3] Li Y, Li Y-H, Xie H-B, Li Z-P, Jiang X, Cai W-Q, Ren J-G, Yin J, Liao S-K, Peng C-Z 2019 Opt. Lett. 44 5262
[4] Stein A, Grande I H L, Castelvero L, Pruneri V 2023 Opt. Express 31 13700
[5] Wang Z-X, Xu H-X, Li J, Yu H-C, Huang J-Q, Han H, Wang C-L, Zhang P, Yin F-F, Xu K, Liu B, Dai Y-T 2025 EPJ Quantum Technol.12 47
[6] Tang Z, Liao Z, Xu F, Qi B, Qian L, Lo H-K 2014 Phys. Rev. Lett. 112 190503
[7] Yin J, Li Y-H, Liao S-K, Yang M, Cao Y, Zhang L, Ren J-G, Cai W-Q, Liu W-Y, Li S-L, Shu R, Huang Y-M, Deng L, Li L, Zhang Q, Liu N-L, Chen Y-A, Lu C-Y, Wang X-B, Xu F H, Wang J-Y, Peng C-Z, Ekert Artur K, Pan J-W 2020 Nature 582 501
[8] Chen Y-A, Zhang Q, Chen T-Y, Cai W-Q, Liao S-K, Zhang J, Chen K, Yin J, Ren J-G, Chen Z, Han S-L, Yu Q, Liang K, Zhou F, Yuan X, Zhao M-S, Wang T-Y, Jiang X, Zhang L, Liu W-Y, Li Y, Shen Q, Cao Y, Lu C-Y, Shu R, Wang J-Y, Li L, Liu N-L, Xu F H, Wang X-B, Peng C-Z, Pan J-W 2021 Nature 589 214
[9] Tang Y-L, Yin H-L, Zhao Q, Liu H, Sun X-X, Huang M-Q, Zhang W-J, Chen S-J, Zhang L, You L-X, Wang Z, Liu Y, Lu C-Y, Jiang X, Ma X F, Zhang Q, Chen T-Y, Pan J-W 2016 Phys. Rev. X 6 011024
[10] Liu Y, Zhang W-J, Jiang C, Chen J-P, Zhang C, Pan W-X, Ma D, Dong H, Xiong J-M, Zhang C-J, Li H, Wang R-C, Wu J, Chen T-Y, You L, Wang X-B, Zhang Q, Pan J-W 2023 Phys. Rev. Lett. 130 210801
[11] Zhu H-T, Huang Y Z, Pan W-X, Zhou C-W, Tang J J, He H, Cheng M, Jin X D, Zou M, Tang S B, Ma X F, Chen T-Y, Pan J-W 2024 Optica 11 883
[12] Mamdoohi G, Abas A F, Samsudin K 2012 Eng. Appl. Artif. Intell. 25 869
[13] Liu L L, Jing M Y, Yu B, Hu J Y, Xiao L T, Jia S T 2015 Laser Optoelectron. Prog. 52 072701 (in Chinese)[刘令令, 景明勇, 于波, 胡建勇, 肖连团, 贾锁堂 2015激光与光电子学进展52 072701]
[14] Xi L X, Zhang X G, Tian F, Tang X, Weng X, Zhang G, Li X, Xiong Q 2010 IEEE Photon. J. 2 195
[15] Asgari H, Khodabandeh M, Hajibaba S, Dadahkhani A H, Madani S A 2025 Indian J. Phys. 99 1471
[16] Tang P-Y, Li G-C, Gao S, Yu G, Dai Y-Q, Xiang Y, Li D-D, Zhang Y-H, Wu B, Zhao Z-Y, Gao D-Q, Liu J-H, Wang J 2018 Acta Opt. Sin. 38 0106005 (in Chinese)[唐鹏毅, 李国春,高松, 余刚, 代云启, 相耀, 李东东, 张英华, 吴冰, 赵子岩, 高德荃, 刘建宏, 王坚 2018 光学学报 38 0106005]
[17] Li P C, Liu K, Jiang J F, Pan L, Ma P F, Li Z C, Zhang S, Li X, Liu T G 2018 Chin. J. Lasers 45 0510002 (in Chinese)[李鹏程, 刘琨, 江俊峰, 潘亮, 马鹏飞, 李志辰, 张炤, 李鑫, 刘铁根 2018中国激光45 0510002]
[18] Ma B B, Ke X Z, Zhang Y 2019 Chin. J. Lasers 46 0106002 (in Chinese)[马兵斌, 柯熙政, 张颖2019中国激光 46 0106002]
[19] Xia Q, Zhang T, Liu J, Yang J, He Y H, Huang W, Li D S, Xu B J 2020 Acta Opt. Sin. 40 1526001 (in Chinese)[夏骞, 张涛, 刘金璐, 杨杰, 何远杭, 黄伟, 李大双, 徐兵杰2020 光学学报 40 1526001]
[20] Huang T, Dong S L, Guo X J, Xiao L T, Jia S T 2006 Appl. Phys. Lett. 89 061102
[21] Wang J J, He B, Yu B, Liu Y, Wang X B, Xiao L T, Jia S T 2012 Acta Phys. Sin. 61 204203 (in Chinese)[王晶晶, 何博, 于波, 刘岩, 王晓波, 肖连团, 贾锁堂 2012 物理学报 61 204203]
[22] Lounis B, Orrit M 2005 Rep. Prog. Phys. 68 1129
计量
- 文章访问数: 35
- PDF下载量: 2
- 被引次数: 0