搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有多种共存现象的新型忆阻混沌系统的周期轨道分析及 DSP 实现

潘奕君董成伟

引用本文:
Citation:

具有多种共存现象的新型忆阻混沌系统的周期轨道分析及 DSP 实现

潘奕君董成伟

Periodic Orbit Analysis and DSP Implementation of a Novel Memristor-based Chaotic System with Multiple Coexisting Phenomena

Pan Yijun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 为了进一步提高混沌系统的复杂性,本文构建了一个新型四维忆阻超混沌系统,其中磁控忆阻器的存在提高了系统的复杂性,使其能够产生更丰富、更复杂的动态行为。所提出的系统有无数多个平衡点,产生的吸引子属于隐藏吸引子。我们讨论了随着参数变化系统的分岔行为、吸引子共存行为、瞬态现象、以及系统依赖于忆阻初始条件变化产生无限多共存吸引子的超级多稳定现象,分析表明新系统具有丰富的动力学行为。同时我们也分析了系统的不稳定周期轨道,建立了适当的符号编码,并探索了周期的修剪规则。此外,我们还提出了一种基于新的忆阻超混沌系统的数字图像加密方法,并验证其具有良好的加密效果。最后,利用 DSP 数字电路对新系统进行了实验验证,结果与数值仿真一致,验证了忆阻系统的正确性与可实现性。
    Memristors exhibit controllable nonlinear characteristics, generating chaotic signals that are characterized by randomness, sensitivity, and unpredictability, thereby demonstrating significant potential applications in information encryption and signal processing. With the integration of chaos theory and electronic technology, constructing memristive hyperchaotic systems has become a hot topic in nonlinear science and information security. This paper aims to overcome the limitation of monotonous dynamic characteristics in traditional chaotic systems by designing novel memristor-based hyperchaotic systems with richer dynamic behavior and higher application value. It conducts characteristic analysis, theoretical verification, application exploration, and hardware implementation to support its engineering applications. Building upon the classical Chen system, this work innovatively incorporates cubic nonlinear magnetically controlled memristor model as a feedback element. By establishing a mathematical model of the memristor and coupling it with the state equations of the Chen system, a four-dimensional memristor-based hyperchaotic system is designed. First, by integrating numerical computation with differential equation theory, a comprehensive mathematical model is established to analyze fundamental properties, such as symmetry and dissipativity, thereby validating the system’s rationality. Second, the system’s dynamical behaviors are analyzed, including attractor phase diagrams, Lyapunov exponents, power spectra, parameter effects, transient dynamics, and coexisting attractors. Simultaneously, variational methods are applied to analyze unstable periodic orbits within the system. A symbolic coding approach based on orbital characteristics is established to convert orbital information into symbolic sequences, and orbital pruning rules are explored to provide a basis for optimal orbital control. Furthermore, a digital image encryption method is proposed based on this system. Using chaotic sequences as keys, image pixels are scrambled and diffused. The effectiveness of encryption is validated through histogram analysis, correlation analysis, information entropy evaluation, and testing of anti-attack capabilities. Finally, a DSP-based digital circuit hardware platform is constructed to run the system, and researchers compare hardware experimental results with software simulation outcomes. Findings reveal that the introduction of memristors induces linearly distributed equilibrium points in phase space, generating hidden attractors that enrich the system’s chaotic behavior. Dynamic behaviors simulation confirm the rich dynamics of this four-dimensional memristorbased hyperchaotic system. The proposed digital image encryption method demonstrates robust security performance. The DSP hardware experiments and software simulations yielded highly consistent attractor phase diagrams, validating the system’s correctness and feasibility.
  • [1]

    Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63 187301 (in Chinese) [刘东青,程海峰,朱玄,王楠楠,张朝阳 2014 物理学报 63 187301]

    [2]

    Ding D W, Lu X Q, Hu Y B, Yang Z L, Wang W, Zhang H W 2022 Acta Phys. Sin. 71 230501 (in Chinese) [丁大为,卢小齐,胡永兵,杨宗立,王威,张红伟 2022 物理学报 71 230501]

    [3]

    Chua L 1971 IEEE Trans. Circ. Theor. 18 507

    [4]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [5]

    Ji X Y, Dong Z K, Lai C S, Zhou G D, Qi D L 2022 Mater. Today Adv. 16 100293

    [6]

    Ji X Y, Lai C S, Zhou G D, Dong Z K, Qi D L, Lai L L 2023 IEEE Trans. Nano Biosci. 22 52

    [7]

    Ji X Y, Chen Y, Wang J F, Zhou G D, Lai C S, Dong Z K 2024 IEEE Internet Things J. 11 39941

    [8]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502

    [9]

    Muthuswamy B, Chua L O 2010 Int. J. Bifurc. Chaos 20 1567

    [10]

    Itoh M, Chua L O 2008 Int. J. Bifurc. Chaos 18 3183

    [11]

    Xi H L, Li Y X, Huang X 2014 Entropy 16 6240

    [12]

    Yan D W, Wang L D, Duan S K 2018 Acta Phys. Sin. 67 110502 (in Chinese) [闫登卫,王丽丹,段 书凯 2018 物理学报 67 110502]

    [13]

    Lai Q, Chen Z J, Xu G H, Liu F 2023 J. Vib. Eng. Technol. 11 3493

    [14]

    Leonov G A, Kuznetsov N V 2013 Int. J. Bifurc. Chaos 23 1330002

    [15]

    Zhang G Z, Quan X, Liu S 2022 Acta Phys. Sin. 71 240502 (in Chinese) [张贵重, 全旭, 刘嵩 2022 物 理学报 71 240502]

    [16]

    Wang J H, Dong C W, Li H T 2022 Fractal Fract. 6 740

    [17]

    Dong C W, Yang M 2024 Fractal Fract. 8 266

    [18]

    Dong C W, Iu Herbert H C 2025 Chin. J. Phys. 97 433

    [19]

    Wang P J, Wu G Z 2005 Acta Phys. Sin. 54 3034 (in Chinses)[王培杰,吴国祯 2005 物理学报 54 3034]

    [20]

    Lan Y H, Cvitanović P 2004 Phys Rev E. 69 016217

    [21]

    Dong C W 2022 Fractal Fract. 6 190

    [22]

    Wang X, Chen G R 2012 Commun Nonlinear Sci Numer Simul. 17 1264

    [23]

    Dong C W 2022 Fractal Fract. 6 547

    [24]

    Yang M, Dong C W, Pan H P 2024 Physica A 637 129586

    [25]

    Dong C W, Wang J H 2022 Fractal Fract. 6 306

    [26]

    Zhuang Z B, Li J, Liu J Y, Chen S Q 2020 Acta Phys. Sin. 69 040502 (in Chinese) [庄志本,李军, 刘静漪,陈世强 2020 物理学报 69 040502]

    [27]

    Huang L L, Yao W J, Xiang J H, Zhang Z F 2020 Complex. 2020 2408460

    [28]

    Dong C W, Yang M, Jia L, Li Z R 2024 Physica A 633 129391

    [29]

    Baranger M, Davies K T R, Mahoney J H 1988 Ann. Phys. 186 95

    [30]

    Cvitanović P, Dettmann C P, Mainieri R, Vattay G 1998 J. Stat. Phys. 93 981

    [31]

    Chai M S, Lan Y H 2021 Chaos 31 033144

    [32]

    Dong C W, Liu H H, Jie Q, Li H T 2022 Chaos Soliton Fract 154 111686

    [33]

    Fridrich J 1997 In 1997 IEEE international conference on systems, man, and cybernetics. Computational cybernetics and simulation (IEEE), pp 1105–1110

    [34]

    Chen T Q, Li J, Cao J, Yang J 2021 Opt. Mater. 117 111150

    [35]

    Hua Z Y, Jin F, Xu B X, Huang H J 2018 Signal Process. 149 148

    [36]

    Peng G Y, Min F H, Wang E R 2018 J. Electr. Comput. Eng. 2018 8649294

    [37]

    Li C L, Li Z Y, Feng W, Tong Y N, Du J R, Wei D Q 2019 AEU- Int. J. Electron Commun. 110 152861

    [38]

    Liu H Y, Hua N, Wang Y N, Liang J Q, Ma H Y 2022 Acta Phys. Sin. 71 170303 (in Chinese) [刘瀚 扬, 华南, 王一诺, 梁俊卿, 马鸿洋 2022 物理学报 71 170303]

    [39]

    Wang Y N, Song Z Y, Ma Y L, Hua N, Ma H Y 2021 Acta Phys. Sin. 70 230302 (in Chinses)[王一 诺, 宋昭阳, 马玉林, 华南,马鸿洋 2021 物理学报 70 230302]

    [40]

    Niu Y, Zhang X C, Han F 2017 Comput. Intell. Neurosci. 2017 4079793

    [41]

    Yildirim M 2020 Microelectron J. 104 104878

    [42]

    Zhao Y B, Yang Q, Yu C C, Liu M H 2025 Chin. J. Comput. Phys. 42 232 (in Chinese)[赵益波, 杨 清, 于程程, 刘明华 2025 计算物理 42 232]

    [43]

    Wu C Y, Sun K H 2022 Chaos Soliton Fract 159 112129

  • [1] 赖强, 王君, 黄大勋. 简单忆阻混沌系统的多样动力学分析与预定义时间同步*. 物理学报, doi: 10.7498/aps.74.20250954
    [2] 赖强, 王君. 基于滑模趋近律的忆阻混沌系统有限和固定时间同步. 物理学报, doi: 10.7498/aps.73.20241013
    [3] 全旭, 邱达, 孙智鹏, 张贵重, 刘嵩. 一个具有共存吸引子的四阶混沌系统动力学分析及FPGA实现. 物理学报, doi: 10.7498/aps.72.20230795
    [4] 刘瀚扬, 华南, 王一诺, 梁俊卿, 马鸿洋. 基于量子随机行走和多维混沌的三维图像加密算法. 物理学报, doi: 10.7498/aps.71.20220466
    [5] 秦铭宏, 赖强, 吴永红. 具有无穷共存吸引子的简单忆阻混沌系统的分析与实现. 物理学报, doi: 10.7498/aps.71.20220593
    [6] 张贵重, 全旭, 刘嵩. 一个具有超级多稳定性的忆阻混沌系统的分析与FPGA实现. 物理学报, doi: 10.7498/aps.71.20221423
    [7] 王一诺, 宋昭阳, 马玉林, 华南, 马鸿洋. 基于DNA编码与交替量子随机行走的彩色图像加密算法. 物理学报, doi: 10.7498/aps.70.20211255
    [8] 赵智鹏, 周双, 王兴元. 基于深度学习的新混沌信号及其在图像加密中的应用. 物理学报, doi: 10.7498/aps.70.20210561
    [9] 方洁, 姜明浩, 安小宇, 孙军伟. 基于混沌加密和DNA编码的“一图一密”图像加密算法. 物理学报, doi: 10.7498/aps.70.20201642
    [10] 董成伟. 非扩散洛伦兹系统的周期轨道. 物理学报, doi: 10.7498/aps.67.20181581
    [11] 官国荣, 吴成茂, 贾倩. 一种改进的高性能Lorenz系统构造及其应用. 物理学报, doi: 10.7498/aps.64.020501
    [12] 武花干, 陈胜垚, 包伯成. 忆阻混沌系统的脉冲同步与初值影响研究. 物理学报, doi: 10.7498/aps.64.030501
    [13] 彭再平, 王春华, 林愿, 骆小文. 一种新型的四维多翼超混沌吸引子及其在图像加密中的研究. 物理学报, doi: 10.7498/aps.63.240506
    [14] 艾星星, 孙克辉, 贺少波, 王会海. 简化Lorenz多涡卷混沌吸引子的设计与应用. 物理学报, doi: 10.7498/aps.63.120511
    [15] 邓海涛, 邓家先, 邓小梅. 基于EZW的图像压缩和树形加密同步算法. 物理学报, doi: 10.7498/aps.62.110701
    [16] 林愿, 王春华, 徐浩. 基于电流传输器的网格多涡卷混沌吸引子在混合图像加密中的研究. 物理学报, doi: 10.7498/aps.61.240503
    [17] 朱从旭, 孙克辉. 对一类超混沌图像加密算法的密码分析与改进. 物理学报, doi: 10.7498/aps.61.120503
    [18] 孙福艳, 吕宗旺. 空间混沌序列的加密特性研究. 物理学报, doi: 10.7498/aps.60.040503
    [19] 段黎力, 廖晓峰, 向涛. 基于Markov性质的一阶安全算术编码及应用. 物理学报, doi: 10.7498/aps.59.6744
    [20] 孟祥锋, 彭翔, 蔡履中, 何文奇, 秦琬, 郭继平, 李阿蒙. 优化的两步相移算法在图像加密中的应用研究. 物理学报, doi: 10.7498/aps.59.6118
计量
  • 文章访问数:  25
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-11

/

返回文章
返回