-
本研究采用基于密度泛函理论的第一性原理平面波超软赝势方法,计算了本征单层二碲化钨(WTe2)、单碲空位缺陷(VTe)单层WTe2及稀土元素X (X=Ce,Yb,Eu)掺杂含VTe的单层WTe2(VTe-X)的能带结构、电子态密度及光学性质,以探究稀土掺杂与单碲空位缺陷的共同作用对单层WTe2光学性质的提升效果.相较于VTe模型,VTe-X模型对单层WTe2材料在红外波段(0 eV~1.2 eV)的光学性能提升更佳.所有VTe-X模型均表现出金属性,费米能级附近的电子态密度峰值显著增强.其中VTe-Yb模型在红外范围内的吸收系数、反射率、静介电常数和介电函数虚部峰值较单层WTe2分别提升了3.76倍、1.83倍、2.63倍和24.20倍.该研究为基于单层WTe2衬底的红外光传感器设计提供了理论依据.Based on first-principles calculations employing density functional theory with a planewave ultrasoft pseudopotential approach, we performed computations using the CASTEP (Cambridge Sequential Total Energy Package) module within the Materials Studio software. The electronic band structures, density of states, and optical properties of intrinsic monolayer WTe2, monolayer WTe2 with a single tellurium vacancy (VTe), and rare-earth-doped VTe-containing monolayer WTe2 (VTe-X, where X = Ce, Yb, Eu) were systematically investigated to explore the synergistic effects of rare-earth doping and tellurium vacancy defects on the optical properties of monolayer WTe2. The results indicate that, compared to the VTe model, the VTe-X models lead to a more pronounced enhancement of the optical performance in the infrared region (0 eV– 1.2 eV). All VTeX structures exhibit metallic characteristics, with a notable increase in the density of states near the Fermi level. In particular, the VTe-Yb model demonstrates significant improvement in the infrared range: the absorption coefficient, reflectivity, static dielectric constant, and peak value of the imaginary part of the dielectric function are enhanced by factors of 3.76, 1.83, 2.63, and 24.20, respectively, compared to those of pristine monolayer WTe2. This study provides a theoretical foundation for the design of infrared photodetectors based on monolayer WTe2 substrates.
-
Keywords:
- Monolayer WTe2 /
- First principles /
- Optical property
-
[1] Wu D, Mo Z H, Li X, Ren X Y, Shi Z F, Li X J, Zhang L, Yu X C, Peng H X, Zeng L H, Shan C X 2024 Appl. Phys. Rev. 11041401
[2] Zhu S H, Liu H, Wu J X, Mei J L, Zhang R, Liu Y, Chen Y, Cai X H 2025 ACS Appl. Mater. & Inter. 1722060
[3] Song T C, Jia Y, Yu G, Tang Y, Uzan A J, Zheng Z Y J, Guan H S, Onyszczak M, Singha R 2025 Phys. Rev. Res. 7013224
[4] Kim H, Yoo Y D 2025 Adva. Scie. 122500516
[5] Yang H, Synnatschke K, Yoon J, Mirhosseini H, Hermes I M, Li X D, Neumann C, Morag A, Turchanin A, Kühne T D, Parkin S S P, Yang S, Nia A S, Feng X L 2025 ACS. Nano. 1914309
[6] Song T, Jia Y, Yu G, Tang Y, W ang P J, Singha R, Gui X, Uzan-Narovlansky A, Onyszczak M, Watanabe M, Taniguchi T, Cava R, Schoop L, Ong N, Wang S 2024 Nat. Phys. 20269
[7] Xu S Y, Ma Q, Shen H, Fatemi V, Wu S, Chang T R, Jarillo-Herrero P 2018 Nat. Phys. 14900
[8] Liu X, Zhao H, Chen Y, Liang X, Liu S, Huang Z, Wu Z, Mao Y, Shi X 2024 Mater. Tod. Chem. 38102077
[9] Liu Y, Xiao C, Li Z, Xie Y 2016 Adva. Ene. Mater. 61600436
[10] Li J, Liang Y, Li X, Wei G, Zhang Z, Chen Q 2025 Mole. Cata. 579115048
[11] Schuler B, Qiu D Y, Refaely-Abramson S, Kastl C, Chen C, Barja S, Koch R, Ogletree F, Aloni S 2019 Phys. Rev. let. 123076801
[12] Yelgel C, Yelgel Ö C 2024 Model. Sim. in Mater. Sci. Engin. 32085016
[13] Wu D, Guo J, Wang C, Ren X, Chen Y, Lin P, Zeng L, Shi Z, Li X, Shan C, Jie J 2021 ACS. Nano. 1510119
[14] Torun E, Sahin H, Cahangirov S, Rubio A, Peeters F M 2016 J. of App. Phys. 119074307
[15] Liu Y, Huang Y, Zhao Y, Bai G, Xu S 2021 Las. & Optoe. Prog. 581516014(In Chinese) [刘源, 黄友强, 赵英杰, 白功勋, 徐时清2021激光与光电子学进展581516014]
[16] Xu D, Chen W, Zeng M, Xue H, Chen Y, Sang X, Xiao Y, Zhang T, Unocic R, Xiao K, Fu L 2018 Angew. Chem. Inter. Edit. 57755
[17] Li L, Carter E A 2019 J. Ame. Che. Soc. 14110451
[18] Chiritescu C, Cahill D, Nguyen N, Johnson D, Bodapati A, Keblinski P, Zschack P 2007 Sci. 315351
[19] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Zeitschrift für kristallographie-crystalline mater. 220567
[20] Pfrommer B G, Côté M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131233
[21] Yang Z, Wang X, Su X 2012 J. Central South University. 191796
[22] Luo L, Zhu H, Yin K, Wu Z, Xu F, Gao T, Jia W 2024 ACS. Ome. 101486
[23] Chauhan I, Kaur M, Singh K, Kumar A 2025 Adva. Semi. 1169
[24] Du D X, Flannigan D J 2020 Struc. Dynam. 7024103
[25] Saraswat R, Kolos M, Verma R, Karlický F, Bhattacharya S 2024 The J. of Phys. Chem. C 1288341
[26] Basiuk V A, Henao-Holguín L V 2014 J. Comp. Theo. Nano. 111609
[27] Tong Z, Dumitrică T, Frauenheim T 2021 Phys. Che. Chem. Phy. 2319627
计量
- 文章访问数: 15
- PDF下载量: 0
- 被引次数: 0