搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀土元素掺杂含单碲空位缺陷单层WTe2光学性质的第一性原理

尹开慧 朱洪强 徐凤霞 吴泽邦 高田军 杨英 冯庆 岳远霞 贾伟尧

引用本文:
Citation:

稀土元素掺杂含单碲空位缺陷单层WTe2光学性质的第一性原理

尹开慧, 朱洪强, 徐凤霞, 吴泽邦, 高田军, 杨英, 冯庆, 岳远霞, 贾伟尧
cstr: 32037.14.aps.74.20251196

First-principles study on optical properties of rare-earth doped monolayer WTe2 with single tellurium vacancies

YIN Kaihui, ZHU Hongqiang, XU Fengxia, WU Zebang, GAO Tianjun, YANG Ying, FENG Qing, YUE Yuanxia, JIA Weiyao
cstr: 32037.14.aps.74.20251196
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 本文采用基于密度泛函理论的第一性原理平面波超软赝势方法, 计算了本征单层二碲化钨 (WTe2)、单碲空位缺陷(VTe)单层WTe2及稀土元素X (X = Ce, Yb, Eu)掺杂含VTe的单层WTe2 (VTe-X)的能带结构、电子态密度及光学性质, 以探究稀土掺杂与单碲空位缺陷的共同作用对单层WTe2光学性质的提升效果. 相较于VTe缺陷类型, VTe-X缺陷类型对单层WTe2材料在红外波段(0—1.2 eV)的光学性能提升更佳. 所有VTe-X缺陷类型均表现出金属性, 费米能级附近的电子态密度峰值显著增强. 其中VTe-Yb缺陷类型在红外范围内的吸收系数、反射率、静介电常数和介电函数虚部峰值较单层WTe2分别提升了3.76倍、1.83倍、2.63倍和24.20倍. 该研究为基于单层WTe2衬底的红外光传感器设计提供了理论依据.
    Using first-principles calculations based on density functional theory with a plane-wave ultrasoft pseudopotential approach, we conduct computations using the CASTEP (Cambridge Sequential Total Energy Package) module within the Materials Studio software. The electronic band structures, densities of states, and optical properties of intrinsic monolayer WTe2, monolayer WTe2 with a single tellurium vacancy (VTe), and rare-earth-doped VTe-containing monolayer WTe2 (VTe-X, where X = Ce, Yb, Eu) are systematically investigated to explore the synergistic effects of rare-earth doping and tellurium vacancy defects on the optical properties of monolayer WTe2. The results indicate that compared with the VTe model, the VTe-X models lead to a more pronounced enhancement of the optical performance in the infrared region (0–1.2 eV). All of VTe-X structures exhibit metallic characteristics, with a notable increase in the density of states near the Fermi level. In particular, the VTe-Yb model demonstrates significant improvement in the infrared range: the absorption coefficient, reflectivity, static dielectric constant, and peak value of the imaginary part of the dielectric function are enhanced by factors of 3.76, 1.83, 2.63, and 24.20, respectively, compared with those of pristine monolayer WTe2. This study provides a theoretical foundation for designing infrared photodetectors based on monolayer WTe2 substrates.
      通信作者: 朱洪强, 20132013@cqnu.edu.cn ; 贾伟尧, wyjia@swu.edu.cn
    • 基金项目: 重庆市自然科学基金(批准号: CSTB2023NSCQ-MSX0207, CSTB2023NSCQ-MSX0425)和重庆市教委科学技术研究计划(批准号: KJQN202200569, KJQN202200507, KJQN202300513, KJZD-K202300516)资助的课题.
      Corresponding author: ZHU Hongqiang, 20132013@cqnu.edu.cn ; JIA Weiyao, wyjia@swu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Chongqing, China (Grant Nos. CSTB2023NSCQ-MSX0207, CSTB2023NSCQ-MSX0425) and the Science and Technology Research Program of Chongqing Municipal Education Commission, China (Grant Nos. KJQN202200569, KJQN202200507, KJQN202300513, KJZD-K202300516).
    [1]

    Wu D, Mo Z H, Li X, Ren X Y, Shi Z F, Li X J, Zhang L, Yu X C, Peng H X, Zeng L H, Shan C X 2024 Appl. Phys. Rev. 11 041401Google Scholar

    [2]

    Zhu S H, Liu H, Wu J X, Mei J L, Zhang R, Liu Y, Chen Y, Cai X H 2025 ACS Appl. Mater. Int. 17 22060Google Scholar

    [3]

    Song T C, Jia Y, Yu G, Tang Y, Uzan A J, Zheng Z Y J, Guan H S, Onyszczak M, Singha R 2025 Phys. Rev. Res. 7 013224Google Scholar

    [4]

    Kim H, Yoo Y D 2025 Adv. Sci. 12 2500516Google Scholar

    [5]

    Yang H, Synnatschke K, Yoon J, Mirhosseini H, Hermes I M, Li X D, Neumann C, Morag A, Turchanin A, Kühne T D, Parkin S S P, Yang S, Nia A S, Feng X L 2025 ACS. Nano. 19 14309Google Scholar

    [6]

    Song T C, Jia Y Y, Yu G, Tang Y, Wang P J, Singha R, Gui X, Uzan-Narovlansky A J, Onyszczak M, Watanabe K, Taniguchi T, Cava R J, Schoop L M, Ong N P, Wang S F 2024 Nat. Phys. 20 269Google Scholar

    [7]

    Xu S Y, Ma Q, Shen H T, Fatemi V, Wu S F, Chang T R, Chang G Q, Mier Valdivia A M, Chan C K, Gibson Q D, Zhou J D, Liu Z, Watanabe K, Taniguchi T, Lin H, Cava R J, Fu L, Gedik N, Jarillo-Herrero P 2018 Nat. Phys. 14 900Google Scholar

    [8]

    Liu X, Zhao H Q, Chen Y, Liang X X, Liu S X, Huang Z Q, Wu Z P, Mao Y L, Shi X 2024 Mater. Today Chem. 38 102077Google Scholar

    [9]

    Liu Y W, Xiao C, Li Z, Xie Y 2016 Adv. Energy Mater. 6 1600436Google Scholar

    [10]

    Li J, Liang Y C, Li X X, Wei G M, Zhang Z H, Chen Q 2025 Mole. Cata. 579 115048

    [11]

    Schuler B, Qiu D Y, Refaely-Abramson S, Kastl C, Chen C, Barja S, Koch R, Ogletree F, Aloni S 2019 Phys. Rev. Lett. 123 076801Google Scholar

    [12]

    Yelgel C, Yelgel Ö C 2024 Model. Sim. Mater. Sci. Eng. 32 085016Google Scholar

    [13]

    Wu D, Guo J W, Wang C Q, Ren X Y, Chen Y S, Lin P, Zeng L H, Shi Z F, Li X J, Shan C X, Jie J S 2021 ACS Nano 15 10119Google Scholar

    [14]

    Torun E, Sahin H, Cahangirov S, Rubio A, Peeters F M 2016 J. App. Phys. 119 074307Google Scholar

    [15]

    刘源, 黄友强, 赵英杰, 白功勋, 徐时清 2021 激光与光电子学进展 58 1516014Google Scholar

    Liu Y, Huang Y Q, Zhao Y J, Bai G X, Xu S Q 2021 Las. Opt. Prog. 58 1516014Google Scholar

    [16]

    Xu D, Chen W Y, Zeng M Q, Xue H F, Chen Y X, Sang X H, Xiao Y, Zhang T, Unocic R R, Xiao K, Fu L 2018 Angew. Chem. Int. Edit. 57 755Google Scholar

    [17]

    Li L S, Carter E A 2019 J. Am. Chem. Soc. 141 10451Google Scholar

    [18]

    Chiritescu C, Cahill D, Nguyen N, Johnson D, Bodapati A, Keblinski P, Zschack P 2007 Science 315 351Google Scholar

    [19]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Krist. Cryst. Mater. 220 567Google Scholar

    [20]

    Pfrommer B G, Côté M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233Google Scholar

    [21]

    Yang Z H, Wang X Y, Su X P 2012 J. Central South Univ. 19 1796Google Scholar

    [22]

    Luo L, Zhu H Q, Yin K H, Wu Z B, Xu F X, Gao T J, Yue Y X, Chen J J, Feng Q, Yang Y, Jia W Y 2024 ACS Ome. 10 1486

    [23]

    Chauhan I, Kaur M, Singh K, Kumar A 2025 Adv. Semi. 1 169

    [24]

    Du D X, Flannigan D J 2020 Struc. Dynam. 7 024103Google Scholar

    [25]

    Saraswat R, Kolos M, Verma R, Karlický F, Bhattacharya S 2024 J. Phys. Chem. C 128 8341Google Scholar

    [26]

    Basiuk V A, Henao-Holguín L V 2014 J. Comp. Theo. Nano. 11 1609Google Scholar

    [27]

    Tong Z, Dumitrică T, Frauenheim T 2021 Phys. Chem. Chem. Phy. 23 19627Google Scholar

  • 图 1  (a) 单层WTe2原子结构俯视图和侧视图; (b) 单层WTe2能带结构图、态密度图

    Fig. 1.  (a) Top and side views of monolayer WTe2; (b) band structure and partial density of states of monolayer WTe2.

    图 2  不同缺席类型的单层WTe2原子结构俯视图和侧视图 (a) VTe; (b) VTe-Ce(W); (c) VTe-Yb(W); (d) VTe- Eu(W)

    Fig. 2.  Top and side views of atomic structures for monolayer WTe2 with different defect types: (a) VTe; (b) VTe-Ce(W); (c) VTe-Yb(W); (d) VTe- Eu(W).

    图 3  含VTe-Yb(W)缺陷的单层WTe2声子谱

    Fig. 3.  Phonon spectrum of the VTe-Yb(W) monolayer WTe2.

    图 4  不同缺陷类型的单层WTe2能带结构图、态密度图 (a) VTe; (b) VTe-Ce(W); (c) VTe-Yb(W); (d) VTe-Eu(W)

    Fig. 4.  Band structures and density of states for monolayer WTe2 with different defect types: (a) VTe; (b) VTe-Ce(W); (c) VTe-Yb(W); (d) VTe-Eu(W).

    图 5  含不同缺陷类型的单层WTe2介电函数 (a) 实部图像; (b) 虚部图像

    Fig. 5.  Dielectric function of monolayer WTe2 with different defect types: (a) Real part; (b) imaginary part.

    图 6  不同缺陷类型单层WTe2的(a)光吸收谱和(b)反射谱

    Fig. 6.  (a) Optical absorption spectra and (b) reflectance spectra for monolayer WTe2 with different defect types.

  • [1]

    Wu D, Mo Z H, Li X, Ren X Y, Shi Z F, Li X J, Zhang L, Yu X C, Peng H X, Zeng L H, Shan C X 2024 Appl. Phys. Rev. 11 041401Google Scholar

    [2]

    Zhu S H, Liu H, Wu J X, Mei J L, Zhang R, Liu Y, Chen Y, Cai X H 2025 ACS Appl. Mater. Int. 17 22060Google Scholar

    [3]

    Song T C, Jia Y, Yu G, Tang Y, Uzan A J, Zheng Z Y J, Guan H S, Onyszczak M, Singha R 2025 Phys. Rev. Res. 7 013224Google Scholar

    [4]

    Kim H, Yoo Y D 2025 Adv. Sci. 12 2500516Google Scholar

    [5]

    Yang H, Synnatschke K, Yoon J, Mirhosseini H, Hermes I M, Li X D, Neumann C, Morag A, Turchanin A, Kühne T D, Parkin S S P, Yang S, Nia A S, Feng X L 2025 ACS. Nano. 19 14309Google Scholar

    [6]

    Song T C, Jia Y Y, Yu G, Tang Y, Wang P J, Singha R, Gui X, Uzan-Narovlansky A J, Onyszczak M, Watanabe K, Taniguchi T, Cava R J, Schoop L M, Ong N P, Wang S F 2024 Nat. Phys. 20 269Google Scholar

    [7]

    Xu S Y, Ma Q, Shen H T, Fatemi V, Wu S F, Chang T R, Chang G Q, Mier Valdivia A M, Chan C K, Gibson Q D, Zhou J D, Liu Z, Watanabe K, Taniguchi T, Lin H, Cava R J, Fu L, Gedik N, Jarillo-Herrero P 2018 Nat. Phys. 14 900Google Scholar

    [8]

    Liu X, Zhao H Q, Chen Y, Liang X X, Liu S X, Huang Z Q, Wu Z P, Mao Y L, Shi X 2024 Mater. Today Chem. 38 102077Google Scholar

    [9]

    Liu Y W, Xiao C, Li Z, Xie Y 2016 Adv. Energy Mater. 6 1600436Google Scholar

    [10]

    Li J, Liang Y C, Li X X, Wei G M, Zhang Z H, Chen Q 2025 Mole. Cata. 579 115048

    [11]

    Schuler B, Qiu D Y, Refaely-Abramson S, Kastl C, Chen C, Barja S, Koch R, Ogletree F, Aloni S 2019 Phys. Rev. Lett. 123 076801Google Scholar

    [12]

    Yelgel C, Yelgel Ö C 2024 Model. Sim. Mater. Sci. Eng. 32 085016Google Scholar

    [13]

    Wu D, Guo J W, Wang C Q, Ren X Y, Chen Y S, Lin P, Zeng L H, Shi Z F, Li X J, Shan C X, Jie J S 2021 ACS Nano 15 10119Google Scholar

    [14]

    Torun E, Sahin H, Cahangirov S, Rubio A, Peeters F M 2016 J. App. Phys. 119 074307Google Scholar

    [15]

    刘源, 黄友强, 赵英杰, 白功勋, 徐时清 2021 激光与光电子学进展 58 1516014Google Scholar

    Liu Y, Huang Y Q, Zhao Y J, Bai G X, Xu S Q 2021 Las. Opt. Prog. 58 1516014Google Scholar

    [16]

    Xu D, Chen W Y, Zeng M Q, Xue H F, Chen Y X, Sang X H, Xiao Y, Zhang T, Unocic R R, Xiao K, Fu L 2018 Angew. Chem. Int. Edit. 57 755Google Scholar

    [17]

    Li L S, Carter E A 2019 J. Am. Chem. Soc. 141 10451Google Scholar

    [18]

    Chiritescu C, Cahill D, Nguyen N, Johnson D, Bodapati A, Keblinski P, Zschack P 2007 Science 315 351Google Scholar

    [19]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Krist. Cryst. Mater. 220 567Google Scholar

    [20]

    Pfrommer B G, Côté M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233Google Scholar

    [21]

    Yang Z H, Wang X Y, Su X P 2012 J. Central South Univ. 19 1796Google Scholar

    [22]

    Luo L, Zhu H Q, Yin K H, Wu Z B, Xu F X, Gao T J, Yue Y X, Chen J J, Feng Q, Yang Y, Jia W Y 2024 ACS Ome. 10 1486

    [23]

    Chauhan I, Kaur M, Singh K, Kumar A 2025 Adv. Semi. 1 169

    [24]

    Du D X, Flannigan D J 2020 Struc. Dynam. 7 024103Google Scholar

    [25]

    Saraswat R, Kolos M, Verma R, Karlický F, Bhattacharya S 2024 J. Phys. Chem. C 128 8341Google Scholar

    [26]

    Basiuk V A, Henao-Holguín L V 2014 J. Comp. Theo. Nano. 11 1609Google Scholar

    [27]

    Tong Z, Dumitrică T, Frauenheim T 2021 Phys. Chem. Chem. Phy. 23 19627Google Scholar

  • [1] 宋蕊, 程润, 冯凯, 姚佳, 王必利, 鲁梦洁, 安明. 二维单层FeGa2S4电子结构及光学性质调控研究. 物理学报, 2026, 75(1): . doi: 10.7498/aps.75.20251180
    [2] 宋蕊, 王必利, 冯凯, 姚佳, 李霞. 应力调控对单层TiOCl2电子结构及光学性质的影响. 物理学报, 2022, 71(7): 077101. doi: 10.7498/aps.71.20212023
    [3] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究. 物理学报, 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [4] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究. 物理学报, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [5] 熊子谦, 张鹏程, 康文斌, 方文玉. 一种新型二维TiO2的电子结构与光催化性质(已撤稿. 物理学报, 2020, 69(16): 166301. doi: 10.7498/aps.69.20200631
    [6] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究. 物理学报, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [7] 潘凤春, 林雪玲, 陈焕铭. C掺杂金红石相TiO2的电子结构和光学性质的第一性原理研究. 物理学报, 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [8] 谢知, 程文旦. TiO2纳米管电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [9] 程旭东, 吴海信, 唐小路, 王振友, 肖瑞春, 黄昌保, 倪友保. Na2Ge2Se5电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [10] 程和平, 但加坤, 黄智蒙, 彭辉, 陈光华. 黑索金电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [11] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [12] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究. 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [13] 崔冬萌, 谢泉, 陈茜, 赵凤娟, 李旭珍. Si基外延Ru2Si3电子结构及光学性质研究. 物理学报, 2010, 59(3): 2027-2032. doi: 10.7498/aps.59.2027
    [14] 李旭珍, 谢泉, 陈茜, 赵凤娟, 崔冬萌. OsSi2电子结构和光学性质的研究. 物理学报, 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
    [15] 李晓凤, 姬广富, 彭卫民, 申筱濛, 赵峰. 高压下固态Kr弹性性质、电子结构和光学性质的第一性原理计算. 物理学报, 2009, 58(4): 2660-2666. doi: 10.7498/aps.58.2660
    [16] 关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭. Al和Ni共掺ZnO光学性质的第一性原理研究. 物理学报, 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [17] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究. 物理学报, 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [18] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [19] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [20] 赵宗彦, 柳清菊, 张 瑾, 朱忠其. 3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究. 物理学报, 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
计量
  • 文章访问数:  305
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-02
  • 修回日期:  2025-10-01
  • 上网日期:  2025-10-14
  • 刊出日期:  2025-11-20

/

返回文章
返回