搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非极性固体表面纳米液滴内离子结晶的分子动力学模拟

黄永峰 曹智建 孟胜

引用本文:
Citation:

非极性固体表面纳米液滴内离子结晶的分子动力学模拟

黄永峰, 曹智建, 孟胜

Molecular dynamics simulation of the crystallization in nano-droplet on the nonpolar solid surface

Huang Yongfeng, Zhijian Cao, Sheng Meng
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 固体表面微纳米液滴中的结晶行为在工业与农业领域应用广泛,如绿色打印、农药喷洒等.这些应用涉及的固体基底通常是有机材料,极性较弱或是非极性.因此,研究非极性固体上微纳米液滴内的结晶行为对于上述应用至关重要.然而,目前关于非极性固体表面微纳米液滴内离子结晶行为及其机理的研究相对匮乏,尤其是原子尺度的机制尚不清楚.本文采用分子动力学模拟方法研究了非极性固体表面氯化钠纳米液滴内离子的结晶行为及机理.研究发现,当浓度高于3.76mol/kg时,非极性固体表面的氯化钠纳米液滴内发生结晶.结晶与固体的空间限制效应有关,而与其物理性质无明显关联.在非极性固体与溶液构成的界面处,离子与固体表面之间形成水层,离子被排斥到液滴内部,从而提高了液滴内部的局域离子浓度,促进结晶.在相同条件下,氯化钾纳米液滴内也观察到结晶现象.本文为理解非极性固体表面在固液界面中的作用、调控纳米液滴的结晶行为等提供了新的理论视角.
    Crystallization of ions in aqueous micro-droplet or nano-droplet on solid surfaces is ubiquitous, with applications ranging from inkjet printing to pesticide spraying. The substrates involved are typically nonpolar. Yet, the atomistic mechanism of crystallization within sessile droplets on such nonpolar substrates remains elusive. Here, we employ molecular dynamics simulations to investigate the crystallization of sodium chloride inside an aqueous nano-droplet resting on a nonpolar face-centered-cubic (111) surface. Crystallization occurs inside the droplet rather than at the liquid–gas or solid–liquid interface, when the concentration of the sodium chloride in the droplet exceeds 3.76 mol/kg. The phenomenon originates from the spatial distributions of water molecules and ions: a dense interfacial water layer forms at the solid–liquid interface, whereas ions accumulate in the droplet interior, increasing the local concentration. The ion–water hydration due to the electrostatic interaction dominates over ion–solid interaction. The spatial confinement provided by the solid, rather than the physical properties of the solid, enriches ions inside the nano-droplet and thereby triggers the crystallization. We further generalize this mechanism to the isolated aqueous sodium chloride nano-droplet, where the gas phase breaks the continuous spatial distribution of ions as that in the droplet. Analogous crystallization is observed for the sessile droplet of potassium chloride solution on nonpolar solid surfaces, indicating the generality of crystallization in nano-droplets. These findings offer atomic-scale guidance for controlling crystallization in nano-droplets relevant to microelectronics, inkjet printing and related technologies.
  • [1]

    Wang C L, Lu H J, Wang Z G, Xiu P, Zhou B, Zuo G H, Wan R Z, Hu J, Fang H P 2009 Phys. Rev. Lett. 103 137801

    [2]

    Zhu C Q, Li H, Huang Y F, Zeng X C, Meng S 2013 Phys. Rev. Lett. 110 126101

    [3]

    Xu W, Lan Z, Peng B L, Wen R F, Ma X H 2015 Acta Phys. Sin. 64 216801 (in Chinese) [徐威, 兰忠, 彭本利, 温荣福, 马学虎 2015 物理学报 64 216801]

    [4]

    Si Y F, Yu C L, Dong Z C, Jiang L 2018 Curr. Opin. Colloid Interface Sci. 36 10

    [5]

    Shen Y T, Lin T, Yang Z Z, Huang Y F, Xu J Y, Meng S 2022 Chin. Phys. B 31 016801

    [6]

    Zang D Y, Tarafdar S, Tarasevich Y Y, Choudhury M D, Dutta M T 2019 Phys. Rep. 804 1

    [7]

    Huang Y F, Zhang C, Meng S 2022 Nanoscale 14 2729

    [8]

    Huang Y F, Liang Y Z, Xu S 2023 Phys. Chem. Chem. Phys. 25 10894

    [9]

    Wan R Z, Wang C L, Lei X L, Zhou G Q, Fang H P 2015 Phys. Rev. Lett. 115 195901

    [10]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827

    [11]

    Josserand C, Thoroddsen S T 2016 Annu. Rev. Fluid Mech. 48 365

    [12]

    Xu H C, Zhang B, Lv C J 2024 Appl. Phys. Lett. 125 091602

    [13]

    Zhang B, Ma C, Zhao H L, Zhao Y G, Hao P F, Feng X Q, Lv C J 2023 Phys. Fluids 35 112111

    [14]

    Gao Y S, Jung S, Pan L 2019 ACS Omega 4 16674

    [15]

    Gao N, Geyer F, Pilat D W, Wooh S, Vollmer D, Butt H J, Berger R 2018 Nat. Phys. 14 191

    [16]

    Butt H J, Berger R, Coninck J D, Tadmor R 2025 Nat. Rev. Phys. 7 425

    [17]

    Chao Y C, Jeon H, Karpitschka S 2025 Phys. Rev. Lett. 134 184001

    [18]

    Tang X X, Chen H Y, Wang J J, Wang Z J, Zang D Y 2023 Acta Phys. Sin. 72 196801 (in Chinese) [唐修行, 陈泓樾, 王婧婧, 王志军, 臧渡洋 2023 物理学报 72 196801]

    [19]

    Feng S Q, Gong L Y, Quan S L, Guo Y L, Sheng S Q 2024 Acta Phys. Sin. 73 103106 (in Chinese) [冯山青, 龚路远, 权生林, 郭亚丽, 沈胜强 2024 物理学报 73 103106]

    [20]

    Bachhuber C 1983 Am. J. Phys. 51 259

    [21]

    Xue G B, Xu Y, Ding T P, Li J, Yin J, Fei W W, Cao Y Z, Yu J, Yuan L Y, Gong L, Chen J, Deng S Z, Zhou J, Guo W L 2017 Nat. Nanotechnol. 12 317

    [22]

    Rafiee J, Mi X, Gullapalli H, Thomas A V, Yavari F, Shi Y F, Ajayan P M, Koratkar N A 2012 Nat. Mater. 11 217

    [23]

    Raj R, Maroo S C, Wang E N 2013 Nano Lett. 13 1509

    [24]

    Cira N J, Benusiglio A, Prakash M 2015 Nature 519 446

    [25]

    Zhang K, Lu Y J, Wang F H 2015 Acta Phys. Sin. 64 064703 (in Chinese) [张凯, 陆勇俊, 王峰会 2015 物理学报 64 064703]

    [26]

    Kuang M X, Wang L B, Song Y L 2014 Adv. Mater. 26 6950

    [27]

    Su M, Sun Y L, Chen B D, Zhang Z Y, Yang X, Chen S S, Pan Q, Zuev D, Belov P, Song Y L 2021 Sci. Bull. 66 250

    [28]

    He E Q, Guo D, Li Z H 2019 Adv. Mater. Interfaces 6 1900446

    [29]

    Li Y N, Yang Q, Li M Z, Song Y L 2016 Sci. Rep. 6 24628

    [30]

    Yu Y Z, Fan J C, Esfandiar A, Zhu Y B, Wu H A, Wang F C 2019 J. Phys. Chem. C 123 1462

    [31]

    Chialvo A A, Cummings P T 2011 J. Phys. Chem. A 115 5918

    [32]

    Kalluri R K, Ho T A, Biener J, Biener M M, Striolo A 2013 J. Phys. Chem. C 117 13609

    [33]

    Zhao W H, Xu W W, Jiang J, Zhao X R, Duan X M, Sun Y X, Francisco J S, Zeng X C 2022 J. Am. Chem. Soc. 144 18976

    [34]

    Zhao W H, Sun Y X, Zhu W D, Jiang J, Zhao X R, Lin D D, Xu W W, Duan X M, Francisco J S, Zeng X C 2021 Nat. Commun. 12 5602

    [35]

    Shi G S, Chen L, Yang Y Z, Li D Y, Qian Z, Liang S S, Yan L, Li L H, Wu M H, Fang H P 2018 Nat. Chem. 10 776

    [36]

    Zhang J, Borg M K, Sefiane K, Reese J M 2015 Phys. Rev. E 92 052403

    [37]

    Werder T, Walther J H, Jaffe R L, Halicioglu T, Koumoutsakos P 2003 J. Phys. Chem. B 107 1345

    [38]

    Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926

    [39]

    Petersen H G 1995 J. Chem. Phys. 103 3668

    [40]

    MacKerell A D, Bashford D, Bellott M, Dunbrack R L, Evanseck J D, Field M J, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau F T K, Mattos C, Michnick S, Ngo T, Nguyen D T, Prodhom B, Reiher W E, Roux B, Schlenkrich M, Smith J C, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M 1998 J. Phys. Chem. B 102 3586

    [41]

    Hess B, Kutzner C, Spoel D, Lindahl E 2008 J. Chem. Theory Comput. 4 435

    [42]

    Tong J H, Peng B L, Kontogeorgis G M, Liang X D 2023 J. Mol. Liq. 371 121086

    [43]

    Zhou L L, Pan J M, Lang L, Tian Z A, Mo Y F, Dong K J 2021 RSC Adv. 11 39829

    [44]

    Zheng Q, Tian Z A, Gao T H, Liang Y C, Chen Q, Xie Q 2023 Appl. Surf. Sci. 637 157952

    [45]

    Kalluri R K, Konatham D, Striolo A 2011 J. Phys. Chem. C 115 13786

    [46]

    Shi G S, Liu J, Wang C L, Song B, Tu Y S, Hu J, Fang H P 2013 Sci. Rep. 3 3436

  • [1] 张彦如, 高翔, 宁宏阳, 张福建, 宋云云, 张忠强, 刘珍. 微纳流固界面主动气膜减阻机理分子动力学研究. 物理学报, doi: 10.7498/aps.74.20250289
    [2] 齐凯, 朱星光, 王军, 夏国栋. 外电场作用下纳米结构表面的固-液界面传热特性. 物理学报, doi: 10.7498/aps.73.20240698
    [3] 白璞, 王登甲, 刘艳峰. 润湿性影响薄液膜沸腾传热的分子动力学研究. 物理学报, doi: 10.7498/aps.73.20232026
    [4] 冯山青, 龚路远, 权生林, 郭亚丽, 沈胜强. 纳米液滴撞击高温平板壁的分子动力学模拟. 物理学报, doi: 10.7498/aps.73.20240034
    [5] 张超, 布龙祥, 张智超, 樊朝霞, 凡凤仙. 丁二酸-水纳米气溶胶液滴表面张力的分子动力学研究. 物理学报, doi: 10.7498/aps.72.20222371
    [6] 潘伶, 张昊, 林国斌. 纳米液滴撞击柱状固体表面动态行为的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20210094
    [7] 杨俊升, 朱子亮, 曹启龙. 预取向半晶态高分子片晶结构形成微观机理及其应力-应变响应特性的分子动力学模拟. 物理学报, doi: 10.7498/aps.69.20191191
    [8] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究. 物理学报, doi: 10.7498/aps.69.20200491
    [9] 陈仙, 张静, 唐昭焕. 纳米尺度下Si/Ge界面应力释放机制的分子动力学研究. 物理学报, doi: 10.7498/aps.68.20181530
    [10] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳. 界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.67.20180958
    [11] 尹灵康, 徐顺, Seongmin Jeong, Yongseok Jho, 王健君, 周昕. 广义等温等压系综-分子动力学模拟全原子水的气液共存形貌. 物理学报, doi: 10.7498/aps.66.136102
    [12] 李艳茹, 何秋香, 王芳, 向浪, 钟建新, 孟利军. 金属纳米薄膜在石墨基底表面的动力学演化. 物理学报, doi: 10.7498/aps.65.036804
    [13] 唐翠明, 赵锋, 陈晓旭, 陈华君, 程新路. Al与α-Fe2O3纳米界面铝热反应的从头计算分子动力学研究. 物理学报, doi: 10.7498/aps.62.247101
    [14] 邱丰, 王猛, 周化光, 郑璇, 林鑫, 黄卫东. Pb液滴在Ni基底润湿铺展行为的分子动力学模拟. 物理学报, doi: 10.7498/aps.62.120203
    [15] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算. 物理学报, doi: 10.7498/aps.62.056803
    [16] 郑小青, 杨洋, 孙得彦. 模型二元有序合金固液界面结构的分子动力学研究. 物理学报, doi: 10.7498/aps.62.017101
    [17] 周广刚, 卢贵武, 矫玉秋, 李英峰, 王坤, 于养信. KDP晶体固-液界面吸附行为的分子模拟研究. 物理学报, doi: 10.7498/aps.61.010204
    [18] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, doi: 10.7498/aps.60.066601
    [19] 叶祥熙, 明辰, 胡蕴成, 宁西京. 体材料结晶能力的理论预测. 物理学报, doi: 10.7498/aps.58.3293
    [20] 叶贞成, 蔡 钧, 张书令, 刘洪来, 胡 英. 方阱链流体在固液界面分布的密度泛函理论研究. 物理学报, doi: 10.7498/aps.54.4044
计量
  • 文章访问数:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-12

/

返回文章
返回