-
This work investigates nonequilibrium phase transitions in a Rydberg atomic system with collective dissipation. [15,16] By combining mean-field theory [26] and Liouvillian spectral analysis [23-27,29,30], we reveal novel nonequilibrium phases induced by collective dissipation and compare the results from both approaches. Our findings demonstrate that collective dissipation not only generates interatomic correlations but also sustains persistent periodic oscillations [18,32] and a distinctive form of bistability, where the system may either evolve to a stationary state or sustain self-consistent oscillatory dynamics. This study highlights the rich nonequilibrium phenomena present in quantum many-body systems and provides an extensible spectral framework for exploring dissipative phases in Rydberg and related systems.
Recent experiments [10-13] have reported persistent oscillations in thermal Rydberg atomic ensembles, yet a theoretical consensus on their origin remains elusive. Motivated by these observations, we introduce a collective dissipation mechanism and employ both mean-field approximations and the Liouvillian spectrum method to systematically explore nonequilibrium phase transitions. Our results show that collective dissipation effectively induces interatomic correlations and sustains persistent periodic oscillations, whereas under the same parameters, independent dissipation leads the system to relax to a stationary state. Furthermore, the nonlinear effects arising from collective dissipation give rise to a novel type of bistability, in which the system can either converge to a fixed point or maintain self-consistent periodic oscillations. This mechanism is distinctly different from conventional bistability induced by Rydberg interactions, which involves two stationary states. Moreover, the Liouvillian spectral method, based on the quantum master equation, successfully captures features of nonequilibrium phase transitions even in finite-dimensional systems, and the results agree well with those obtained from mean-field approximation in the thermodynamic limit.
Our work not only provides a theoretical explanation for recently observed oscillatory phenomena but also predicts novel bistable states and rich nonequilibrium phase structures. It further verifies the effectiveness of the Liouvillian spectral approach in studying quantum many-body systems, contributing significantly to the understanding of microscopic mechanisms underlying nonequilibrium phase transitions.-
Keywords:
- Rydberg atom /
- collective dissipation /
- non-equilibrium phase transition /
- Liouvillian gap
-
[1] Mari A, Farace A, Didier N, Giovannetti V, Fazio R 2013 Physical Review Letters 111 103605
[2] Witthaut D, Wimberger S, Burioni R, Timme M 2017 Nature Communications 8 14829
[3] Biondi M, Blatter G, Türeci H E, Schmidt S 2017 Physical Review A 96 043809
[4] Carmichael H J 2015 Phys. Rev. X 5 031028
[5] Chan C K, Lee T E, Gopalakrishnan S 2015 Phys. Rev. A 91 051601
[6] Wilczek F 2012 Physical Review Letters 109 160401
[7] Greilich A, Kopteva N E, Korenev V L, Haude P A, Bayer M 2025 Nature Communications 16 2936
[8] Liu T, Ou J Y, MacDonald K F, Zheludev N I 2023 Nature Physics 19 986
[9] Wang Z, Gao R, Wu X, Buča B, Mølmer K, You L, Yang F 2025 arXiv 2503.20761
[10] Wu X, Wang Z, Yang F, Gao R, Liang C, Tey M K, Li X, Pohl T, You L 2024 Nature Physics 20 1389
[11] Ding D, Bai Z, Liu Z, Shi B, Guo G, Li W, Adams C S 2024 Science Advances 10 eadl5893
[12] Wadenpfuhl K, Adams C S 2023 Physical Review Letters 131 143002
[13] Jiao Y, Jiang W, Zhang Y, Bai J, He Y, Shen H, Zhao J, Jia S 2024 arXiv:2402.13112
[14] Lee T E, Häffner H, Cross M C 2012 Physical Review Letters 108 023602
[15] Lee T E, Chan C K, Yelin S F 2014 Phys. Rev. A 90 052109
[16] Dicke R H 1954 Physical Review 93 99
[17] Bohnet J G, Chen Z, Weiner J M, Meiser D, Holland M J, Thompson J K 2012 Nature 484 78
[18] Ferioli G, Glicenstein A, Ferrier-Barbut I, Browaeys A 2023 Nature Physics 19 1345
[19] Lei M, Fukumori R, Rochman J, Zhu B, Endres M, Choi J, Faraon A 2023 Nature 617 271
[20] Gross M, Haroche S 1982 Physics Reports 93 301
[21] Prazeres L F D, Souza L D S, Iemini F 2021 Physical Review B 103 184308
[22] Piccitto G, Wauters M, Nori F, Shammah N 2021 Physical Review B 104
[23] Macieszczak K, Guţă M, Lesanovsky I, Garrahan J P 2016 Physical Review Letters 116 240404
[24] Žnidarič M 2015 Physical Review E 92 042143
[25] Minganti F, Biella A, Bartolo N, Ciuti C 2018 Physical Review A 98 042118
[26] Huybrechts D, Minganti F, Nori F, Wouters M, Shammah N 2020 Phys. Rev. B 101 214302
[27] Mori T, Shirai T 2020 Physical Review Letters 125 230604
[28] Casteels W, Fazio R, Ciuti C 2017 Physical Review A 95
[29] Zhang J, Xia G, Wu C W, Chen T, Zhang Q, Xie Y, Su W B, Wu W, Qiu C W, Chen P X, Li W, Jing H, Zhou Y L 2025 Nature Communications 16 301
[30] Zhou Y L, Yu X D, Wu C W, Li X Q, Zhang J, Li W, Chen P X 2023 Phys. Rev. Res. 5 043036
[31] Macieszczak K, Zhou Y L, Hofferberth S, Garrahan J P, Li W, Lesanovsky I 2017 Phys. Rev. A 96 043860
[32] Iemini F, Russomanno A, Keeling J, Schirò M, Dalmonte M, Fazio R 2018 Physical Review Letters 121 035301
[33] Stiesdal N, Busche H, Kumlin J, Kleinbeck K, Büchler H P, Hofferberth S 2020 Phys. Rev. Research 2 043339
[34] Bonifacio R, Lugiato L A 1975 Phys. Rev. A 11 1507
[35] Lindblad G 1976 Communications in Mathematical Physics 48 119
[36] Gorini V, Kossakowski A, Sudarshan E C G 1976 Journal of Mathematical Physics 17 821
[37] Li Y, Wang C, Tang Y, Liu Y C 2024 Phys. Rev. Lett. 132 183803
[38] Weimer H, Kshetrimayum A, Orús R 2021 Rev. Mod. Phys. 93 015008
[39] Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301
[40] Emary C, Brandes T 2003 Phys. Rev. E 67 066203
[41] Mivehvar F 2024 Phys. Rev. Lett. 132 073602
[42] Burgstahler S 1983 The Two-Year College Mathematics Journal 14 203
[43] Lee T E, Häffner H, Cross M C 2011 Phys. Rev. A 84 031402
[44] Ikeda K 1979 Optics Communications 30 257
[45] Gibbs H M, McCall S L, Venkatesan T N C 1976 Physical Review Letters 36 1135
[46] Wang H, Goorskey D J, Xiao M 2001 Physical Review A 65 011801
[47] Marcuzzi M, Levi E, Diehl S, Garrahan J P, Lesanovsky I 2014 Physical Review Letters 113 210401
[48] Šibalić N, Wade C G, Adams C S, Weatherill K J, Pohl T 2016 Physical Review A 94 011401
[49] Zhang L, Fei Y, Cao T, Cao Y, Xu Q, Chen S 2013 Physical Review A 87 053805
[50] Takemura N, Takiguchi M, Sumikura H, Kuramochi E, Shinya A, Notomi M 2020 Physical Review A 102 011501
[51] Shetewy A E, Catuneanu M T, He M, Jamshidi K 2024 Scientific Reports 14 23823
[52] Arakelyan S M 1987 Soviet Physics Uspekhi 30 1041
[53] Jiles D C, Atherton D L 1986 Journal of Magnetism and Magnetic Materials 61 48
[54] Zhang J, Li E Z, Wang Y J, Liu B, Zhang L H, Zhang Z Y, Shao S Y, Li Q, Chen H C, Ma Y, Han T Y, Wang Q F, Nan J D, Yin Y M, Zhu D Y, Guo G C, Ding D S, Shi B S 2025 Nature Communications 16 3511
[55] Breuer H P, Petruccione F 2007 The Theory of Open Quantum Systems (Oxford University Press)
计量
- 文章访问数: 61
- PDF下载量: 3
- 被引次数: 0