搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

集体耗散诱导下里德堡原子气体的非平衡相变

张亚鹏 郑宇杰 汤婧雯 施帅 周艳丽 刘伟涛

引用本文:
Citation:

集体耗散诱导下里德堡原子气体的非平衡相变

张亚鹏, 郑宇杰, 汤婧雯, 施帅, 周艳丽, 刘伟涛

Nonequilibrium Phase Transitions in Rydberg Atom Gases with Collective Dissipation*

ZHANG Yapeng, ZHENG Yujie, TANG Jingwen, SHI Shuai, ZHOU Yanli, LIU Weitao
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文研究具有集体耗散的里德堡原子系统中的非平衡相变。结合平均场理论与刘维尔谱分析,发现集体耗散可诱导原子间关联,并引发一种新型双稳态:系统或收敛于某不动点或保持自激周期性振荡,区别于传统相互作用导致的双稳态。结果表明刘维尔能谱方法在有限维系统中提取的非平衡相变特征与热力学极限下的平均场结果基本一致。该研究不仅能解释里德堡原子实验中观测到的自激振荡现象,还预言了新的相结构,也验证了刘维尔能谱方法在量子多体研究中的有效性,为探索耗散系统中的非平衡相变提供了理论框架。
    This work investigates nonequilibrium phase transitions in a Rydberg atomic system with collective dissipation. [15,16] By combining mean-field theory [26] and Liouvillian spectral analysis [23-27,29,30], we reveal novel nonequilibrium phases induced by collective dissipation and compare the results from both approaches. Our findings demonstrate that collective dissipation not only generates interatomic correlations but also sustains persistent periodic oscillations [18,32] and a distinctive form of bistability, where the system may either evolve to a stationary state or sustain self-consistent oscillatory dynamics. This study highlights the rich nonequilibrium phenomena present in quantum many-body systems and provides an extensible spectral framework for exploring dissipative phases in Rydberg and related systems.
    Recent experiments [10-13] have reported persistent oscillations in thermal Rydberg atomic ensembles, yet a theoretical consensus on their origin remains elusive. Motivated by these observations, we introduce a collective dissipation mechanism and employ both mean-field approximations and the Liouvillian spectrum method to systematically explore nonequilibrium phase transitions. Our results show that collective dissipation effectively induces interatomic correlations and sustains persistent periodic oscillations, whereas under the same parameters, independent dissipation leads the system to relax to a stationary state. Furthermore, the nonlinear effects arising from collective dissipation give rise to a novel type of bistability, in which the system can either converge to a fixed point or maintain self-consistent periodic oscillations. This mechanism is distinctly different from conventional bistability induced by Rydberg interactions, which involves two stationary states. Moreover, the Liouvillian spectral method, based on the quantum master equation, successfully captures features of nonequilibrium phase transitions even in finite-dimensional systems, and the results agree well with those obtained from mean-field approximation in the thermodynamic limit.
    Our work not only provides a theoretical explanation for recently observed oscillatory phenomena but also predicts novel bistable states and rich nonequilibrium phase structures. It further verifies the effectiveness of the Liouvillian spectral approach in studying quantum many-body systems, contributing significantly to the understanding of microscopic mechanisms underlying nonequilibrium phase transitions.
  • [1]

    Mari A, Farace A, Didier N, Giovannetti V, Fazio R 2013 Physical Review Letters 111 103605

    [2]

    Witthaut D, Wimberger S, Burioni R, Timme M 2017 Nature Communications 8 14829

    [3]

    Biondi M, Blatter G, Türeci H E, Schmidt S 2017 Physical Review A 96 043809

    [4]

    Carmichael H J 2015 Phys. Rev. X 5 031028

    [5]

    Chan C K, Lee T E, Gopalakrishnan S 2015 Phys. Rev. A 91 051601

    [6]

    Wilczek F 2012 Physical Review Letters 109 160401

    [7]

    Greilich A, Kopteva N E, Korenev V L, Haude P A, Bayer M 2025 Nature Communications 16 2936

    [8]

    Liu T, Ou J Y, MacDonald K F, Zheludev N I 2023 Nature Physics 19 986

    [9]

    Wang Z, Gao R, Wu X, Buča B, Mølmer K, You L, Yang F 2025 arXiv 2503.20761

    [10]

    Wu X, Wang Z, Yang F, Gao R, Liang C, Tey M K, Li X, Pohl T, You L 2024 Nature Physics 20 1389

    [11]

    Ding D, Bai Z, Liu Z, Shi B, Guo G, Li W, Adams C S 2024 Science Advances 10 eadl5893

    [12]

    Wadenpfuhl K, Adams C S 2023 Physical Review Letters 131 143002

    [13]

    Jiao Y, Jiang W, Zhang Y, Bai J, He Y, Shen H, Zhao J, Jia S 2024 arXiv:2402.13112

    [14]

    Lee T E, Häffner H, Cross M C 2012 Physical Review Letters 108 023602

    [15]

    Lee T E, Chan C K, Yelin S F 2014 Phys. Rev. A 90 052109

    [16]

    Dicke R H 1954 Physical Review 93 99

    [17]

    Bohnet J G, Chen Z, Weiner J M, Meiser D, Holland M J, Thompson J K 2012 Nature 484 78

    [18]

    Ferioli G, Glicenstein A, Ferrier-Barbut I, Browaeys A 2023 Nature Physics 19 1345

    [19]

    Lei M, Fukumori R, Rochman J, Zhu B, Endres M, Choi J, Faraon A 2023 Nature 617 271

    [20]

    Gross M, Haroche S 1982 Physics Reports 93 301

    [21]

    Prazeres L F D, Souza L D S, Iemini F 2021 Physical Review B 103 184308

    [22]

    Piccitto G, Wauters M, Nori F, Shammah N 2021 Physical Review B 104

    [23]

    Macieszczak K, Guţă M, Lesanovsky I, Garrahan J P 2016 Physical Review Letters 116 240404

    [24]

    Žnidarič M 2015 Physical Review E 92 042143

    [25]

    Minganti F, Biella A, Bartolo N, Ciuti C 2018 Physical Review A 98 042118

    [26]

    Huybrechts D, Minganti F, Nori F, Wouters M, Shammah N 2020 Phys. Rev. B 101 214302

    [27]

    Mori T, Shirai T 2020 Physical Review Letters 125 230604

    [28]

    Casteels W, Fazio R, Ciuti C 2017 Physical Review A 95

    [29]

    Zhang J, Xia G, Wu C W, Chen T, Zhang Q, Xie Y, Su W B, Wu W, Qiu C W, Chen P X, Li W, Jing H, Zhou Y L 2025 Nature Communications 16 301

    [30]

    Zhou Y L, Yu X D, Wu C W, Li X Q, Zhang J, Li W, Chen P X 2023 Phys. Rev. Res. 5 043036

    [31]

    Macieszczak K, Zhou Y L, Hofferberth S, Garrahan J P, Li W, Lesanovsky I 2017 Phys. Rev. A 96 043860

    [32]

    Iemini F, Russomanno A, Keeling J, Schirò M, Dalmonte M, Fazio R 2018 Physical Review Letters 121 035301

    [33]

    Stiesdal N, Busche H, Kumlin J, Kleinbeck K, Büchler H P, Hofferberth S 2020 Phys. Rev. Research 2 043339

    [34]

    Bonifacio R, Lugiato L A 1975 Phys. Rev. A 11 1507

    [35]

    Lindblad G 1976 Communications in Mathematical Physics 48 119

    [36]

    Gorini V, Kossakowski A, Sudarshan E C G 1976 Journal of Mathematical Physics 17 821

    [37]

    Li Y, Wang C, Tang Y, Liu Y C 2024 Phys. Rev. Lett. 132 183803

    [38]

    Weimer H, Kshetrimayum A, Orús R 2021 Rev. Mod. Phys. 93 015008

    [39]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301

    [40]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203

    [41]

    Mivehvar F 2024 Phys. Rev. Lett. 132 073602

    [42]

    Burgstahler S 1983 The Two-Year College Mathematics Journal 14 203

    [43]

    Lee T E, Häffner H, Cross M C 2011 Phys. Rev. A 84 031402

    [44]

    Ikeda K 1979 Optics Communications 30 257

    [45]

    Gibbs H M, McCall S L, Venkatesan T N C 1976 Physical Review Letters 36 1135

    [46]

    Wang H, Goorskey D J, Xiao M 2001 Physical Review A 65 011801

    [47]

    Marcuzzi M, Levi E, Diehl S, Garrahan J P, Lesanovsky I 2014 Physical Review Letters 113 210401

    [48]

    Šibalić N, Wade C G, Adams C S, Weatherill K J, Pohl T 2016 Physical Review A 94 011401

    [49]

    Zhang L, Fei Y, Cao T, Cao Y, Xu Q, Chen S 2013 Physical Review A 87 053805

    [50]

    Takemura N, Takiguchi M, Sumikura H, Kuramochi E, Shinya A, Notomi M 2020 Physical Review A 102 011501

    [51]

    Shetewy A E, Catuneanu M T, He M, Jamshidi K 2024 Scientific Reports 14 23823

    [52]

    Arakelyan S M 1987 Soviet Physics Uspekhi 30 1041

    [53]

    Jiles D C, Atherton D L 1986 Journal of Magnetism and Magnetic Materials 61 48

    [54]

    Zhang J, Li E Z, Wang Y J, Liu B, Zhang L H, Zhang Z Y, Shao S Y, Li Q, Chen H C, Ma Y, Han T Y, Wang Q F, Nan J D, Yin Y M, Zhu D Y, Guo G C, Ding D S, Shi B S 2025 Nature Communications 16 3511

    [55]

    Breuer H P, Petruccione F 2007 The Theory of Open Quantum Systems (Oxford University Press)

  • [1] 陈冠宇, 王成, 杨宾, 周朋朋, 陈田田, 伍于晨. 基于信道容量准则的里德堡原子接收机参数优化. 物理学报, doi: 10.7498/aps.74.20250944
    [2] 白健男, 韩嵩, 陈建弟, 韩海燕, 严冬. 超级里德伯原子间的稳态关联集体激发与量子纠缠. 物理学报, doi: 10.7498/aps.72.20222030
    [3] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍. 基于冷里德堡原子电磁感应透明的微波电场测量. 物理学报, doi: 10.7498/aps.72.20222059
    [4] 吴逢川, 安强, 姚佳伟, 付云起. 里德堡原子超外差接收链路中的内禀增益系数研究. 物理学报, doi: 10.7498/aps.72.20222091
    [5] 白文杰, 严冬, 韩海燕, 华硕, 谷开慧. 三体里德堡超级原子的关联动力学研究. 物理学报, doi: 10.7498/aps.71.20211284
    [6] 张正源, 张天乙, 刘宗凯, 丁冬生, 史保森. 里德堡原子多体相互作用的研究进展. 物理学报, doi: 10.7498/aps.69.20200649
    [7] 刘瑞芬, 惠治鑫, 熊科诏, 曾春华. 表面催化反应模型中关联噪声诱导非平衡相变. 物理学报, doi: 10.7498/aps.67.20180250
    [8] 申雅君, 郭永峰, 袭蓓. 关联高斯与非高斯噪声激励的FHN神经元系统的稳态分析. 物理学报, doi: 10.7498/aps.65.120501
    [9] 李洪云, 尹妍妍, 王青, 王立飞. 平行电磁场中里德堡氢原子的自相似结构研究. 物理学报, doi: 10.7498/aps.64.180502
    [10] 董慧杰, 王新宇, 李昌勇, 贾锁堂. 镓原子的Stark能级结构. 物理学报, doi: 10.7498/aps.64.093201
    [11] 黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮. 基于里德堡原子的电场测量. 物理学报, doi: 10.7498/aps.64.160702
    [12] 李昌勇, 张临杰, 赵建明, 贾锁堂. 铯原子里德堡态Stark能量及电偶极矩的测量和理论计算. 物理学报, doi: 10.7498/aps.61.163202
    [13] 郭永峰, 徐 伟. 关联白噪声驱动的具有时间延迟的Logistic系统. 物理学报, doi: 10.7498/aps.57.6081
    [14] 孙 江, 左战春, 郭庆林, 王英龙, 怀素芳, 王 颖, 傅盘铭. 应用双光子共振非简并四波混频测量Ba原子里德伯态. 物理学报, doi: 10.7498/aps.55.221
    [15] 闫桂沈, 李贺军, 郝志彪. 热解碳化学气相沉积中的多重定态和非平衡相变的研究. 物理学报, doi: 10.7498/aps.51.326
    [16] 邵元智, 蓝图, 林光明. 三维动态Ising模型中的非平衡相变:三临界点的存在. 物理学报, doi: 10.7498/aps.50.942
    [17] 张森, 邱济真, 王刚. 静电场中Ca原子里德堡态的能级结构. 物理学报, doi: 10.7498/aps.38.481
    [18] 何兴虹, 李白文, 张承修. 碱原子高里德堡态的极化率. 物理学报, doi: 10.7498/aps.38.1717
    [19] 张森, 邱济真, 胡素芬, 陆杰, 钟建伟, 梁宜, 孙家祯. Sr原子里德堡态的电场效应. 物理学报, doi: 10.7498/aps.37.983
    [20] 周光召, 苏肇冰. 非平衡耗散系统定常态的Goldstone模. 物理学报, doi: 10.7498/aps.29.618
计量
  • 文章访问数:  61
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-30

/

返回文章
返回