搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拓扑物理启发的鲁棒性无线电能传输进展

吴显 黄友韬 李会 羊亚平 陈鸿 郭志伟

引用本文:
Citation:

拓扑物理启发的鲁棒性无线电能传输进展

吴显, 黄友韬, 李会, 羊亚平, 陈鸿, 郭志伟

Research progress of robust magnetic resonance wireless power transfer based on topological physics

WU Xian, HUANG Youtao, LI Hui, YANG Yaping, CHEN Hong, GUO Zhiwei
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 磁共振无线电能传输(Wireless power transfer,WPT)技术是近年来近场调控的研究重点之一,其在移动电话、植入式医疗设备以及电动汽车等诸多方面都具有重要应用价值。对于复杂传能通道需求(机械臂等),通常需要引入中继线圈构造多米诺耦合阵列。然而,传统的多米诺耦合阵列存在明显的局限性:近场耦合导致的多重频率劈裂,使得系统无法保持固定的工作频率;耦合阵列易受到构造误差及参数扰动影响;目前研究多数集中在单负载传输,多负载传输系统仍然亟待开发;能量传输方向难以灵活控制。近年来,光子人工微结构为拓扑物理提供了良好的研究平台,使得拓扑特性得到了广泛的研究。拓扑结构的最显著特征是具有非零的拓扑不变量以及由体边对应确定的鲁棒性边界态,这一天然特性能够免疫制造缺陷和无序扰动。不仅如此,通过调整拓扑态的波函数分布能够使能量精准局域,从而实现定向的WPT。因此,将拓扑模式用于耦合阵列WPT具有重要的科学意义。本文主要阐明了基于宇称-时间(Parity-time,PT)对称的通用型双线圈和三线圈WPT的基本原理,并且介绍了不同拓扑构型下的多米诺线圈阵列能够实现鲁棒的WPT,包括一维周期性模型(SSH链组成的有效二阶PT对称和有效三阶PT对称系统)、一维非周期性模型(拓扑缺陷态、类SSH链、准周期Harper链)以及高阶拓扑模型,最后对拓扑模式在WPT的应用方向进行了展望。
    Magnetic resonance wireless power transfer (WPT) has gradually become a popular research topic of near-field regulation in recent years, with wide application scenarios in mobile phones, implantable medical devices, electric vehicles, and many other fields. However, several challenges remain to be addressed. Near-field coupling induces multiple frequency splits, preventing the system from maintaining a fixed operating frequency; the coupled arrays are susceptible to structural errors and parameter perturbations; current research primarily focuses on single-load transmission, the multi-load transmission systems are still underdeveloped; the direction of transmission is difficult to control flexibly. In recent years, photonic artificial microstructures have provided a flexible platform for studying topological physics, driving significant research interest in their fundamental topological characteristics. The most prominent feature of topological structures is their nonzero topological invariants and the robust edge states determined by the bulk-edge correspondence, which can overcome disturbances caused by defects and disorders. Moreover, by modulating the wave function distribution of topological states, energy can be precisely localized, enabling directional WPT. Therefore, implementing topological modes in WPT systems is of significant scientific importance.
    This review summarizes recent research in topological models for robust WPT, which is divided into three main parts. The first part introduces one-dimensional periodic topological structures, focusing primarily on the significant improvements in transmission efficiency and robustness achieved by utilizing topological edge states in the Su-Schrieffer-Heeger(SSH) model for WPT. Moreover, a composite chain formed by two SSH chains was constructed to realize a higher-order parity-time (PT) symmetric topological model. This approach addresses frequency splitting caused by coupled edge states and exhibits lower power losses in standby mode. The second part discusses several types of aperiodic one-dimensional topological chains. By introducing topological defect states at the interface between two different dimer chain, robust multi-load WPT was achieved. Furthermore, based on the integration of artificial intelligence algorithms, the SSH-like topological model enables more efficient and robust WPT compared to conventional SSH chain. The asymmetric edge states in quasi-periodic Harper chain provide a solution for directional transmission in WPT applications. By introducing nonlinear circuits, this model enables active control of the transfer direction. The third part presents the application of high-order topological corner states in multi-load robust WPT, demonstrating the selective excitation of both symmetric and asymmetric corner modes.
    Finally, future perspectives on the application of topological modes in WPT systems are discussed. With the development of new physics, the integration of non-Hermitian physics and topological physics holds great promise for achieving simultaneous energy-information transfer, which is expected to enable compatible WPT, wireless communication, and wireless sensing within a single system. Such a fusion technology will offer breakthroughs in efficiency, robustness, and multifunctionality for next-generation wireless systems.
  • [1]

    Chen Y, Xiao W, Guan Z, Zhang B, Qiu D, Wu M 2019 IEEE Trans. Ind. Electron. 66 6604

    [2]

    Hirai J, Kim T W, Kawamura A 2000 IEEE Trans. Power Electron.15 21

    [3]

    Beh T C, Kato M, Imura T, Oh S, Hori Y 2012 IEEE Trans. Ind. Electron. 60 3689

    [4]

    Lee B, Kim J, Jo H, Min H, Bien F 2025 Adv. Sci. 12 2407827

    [5]

    Wenaas E P 2014 IEEE Technol. Soc.33 12

    [6]

    Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljačić M 2007 Science 317 83

    [7]

    Karalis A, Joannopoulos J D, Soljačić M 2008 Ann. Phys. 323 34

    [8]

    Song M, Jayathurathnage P, Zanganeh E, Krasikova M, Smirnov P, Belov P, Kapitanova P, Simovski C, Tretyakov S, Krasnok A 2021 Nat. Electron. 4 707

    [9]

    Sample A P, Meyer D T, Smith J R 2010 IEEE Trans. Ind. Electron. 58 544

    [10]

    Ahn D, Hong S 2014 IEEE Trans. Ind. Electron. 61 2225

    [11]

    Sun K, Fan R, Zhang X, Zhang Z, Shi Z, Wang N, Xie P, Wang Z, Fan G, Liu H, Liu C, Li T, Yan C, Guo Z 2018 J. Mater. Chem. C 6 2925

    [12]

    Zhong W, Zhang C, Liu X, Hui S Y R 2014 IEEE Trans. Power Electron. 30 933

    [13]

    Mi C C, Buja G, Choi S Y, Rim C T 2016 IEEE Trans. Ind. Electron. 63 6533

    [14]

    Wei Z, Zhang B 2021 IEEE Trans. Power Electron. 36 11135

    [15]

    Sakhdari M, Hajizadegan M, Chen P Y 2020 Phys. Rev. Res. 2 013152

    [16]

    Stevens C J 2014 IEEE Trans. Power Electron. 30 6182

    [17]

    Lee C K, Zhong W X, Hui S Y R 2011 IEEE Trans. Power Electron. 27 1905

    [18]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959

    [19]

    Feis J, Stevens C, Shamonina E 2020 Appl. Phys. Lett. 117 134106

    [20]

    Wang L K, Wang Y Q, Guo Z W, Jiang H T, Li Y H, Yang Y P, Chen H 2024 Acta Phys. Sin. 73 201101 (in Chinese) [王利凯, 王宇倩, 郭志伟, 江海涛, 李云辉, 羊亚平, 陈鸿 2024 物理学报 73 201101]

    [21]

    Mariello M, Proctor C M 2025 Adv. Mater. Technol. 10 2400797

    [22]

    Lu L, Joannopoulos J D, Soljačić M 2014 Nat. Photon. 8 821

    [23]

    Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O, Carusotto I 2019 Rev. Mod. Phys. 91 015006

    [24]

    Reisner M, Bellec M, Kuhl U, Mortessagne F 2021 Opt. Mater. Express 11 629

    [25]

    Hafezi M, Demler E A, Lukin M D, Taylor J M 2011 Nat. Phys. 7 907

    [26]

    Gao Z, Gao F, Zhang Y, Luo Y, Zhang B 2018 Adv. Opt. Mater. 6 1800532

    [27]

    Rider M S, Buendía Á, Abujetas D R, Huidobro P A, Sánchez Gil J A, Giannini V 2022 ACS Photonics 9 1483

    [28]

    Xie B Y, Wang H F, Zhu X Y, Lu M H, Wang Z D, Chen Y F 2018 Opt. Express 26 24531

    [29]

    Yan Q, Hu X, Fu Y, Lu C, Fan C, Liu Q, Feng X, Sun Q, Gong Q 2021 Adv. Opt. Mater. 9 2001739

    [30]

    Lan Z, Chen M L, Gao F, Zhang S, Sha W E I 2022 Rev. Phys. 9 100076

    [31]

    Xie B Y, Wang H X, Zhang X, Zhan P, Jiang J H, Lu M H, Chen Y F 2021 Nat. Rev. Phys. 3 520

    [32]

    Zhang F, Kane C L, Mele E J 2013 Phys. Rev. Lett. 110 046404

    [33]

    Wang H, Zhang X, Hua J, Lei D, Lu M, Chen Y 2021 J. Opt. 23 123001

    [34]

    Zhang X, Wang H X, Lin Z K, Tian Y, Xie B Y, Lu M H, Chen Y F, Jiang J H 2019 Nat. Phys. 15 582

    [35]

    Smirnova D, Leykam D, Chong Y, Kivshar Y 2020 Appl. Phys. Rev. 7 021306

    [36]

    Tang G J, He X T, Shi F L, Liu J W, Chen X D, Dong J W 2022 Laser & Photonics Rev. 16 2100300

    [37]

    Malzard S, Poli C, Schomerus H 2015 Phys. Rev. Lett. 115 200402

    [38]

    Li F F, Wang H X, Xiong Z, Lou Q, Chen P, Wu R X, Poo Y, Jiang J H, John S 2018 Nat. Commun. 9 2462

    [39]

    Jiang C, Wu Y, Qin M, Ke S 2022 J. Lightwave Technol. 41 2205

    [40]

    Khanikaev A B, Mousavi S H, Tse W, Kargarian M, MacDonald A H, Shvets G 2013 Nat. Mater. 12 233

    [41]

    Takata K, Notomi M 2018 Phys. Rev. Lett. 121 213902

    [42]

    Cáceres Aravena G, Torres L F, Vicencio R A 2020 Phys. Rev. A 102 023505

    [43]

    Huang Q, Guo Z, Feng J, Yu C, Jiang H, Zhang Z, Wang Z, Chen H 2019 Laser & Photonics Rev. 13 1800339

    [44]

    Xiao M, Ma G, Yang Z, Sheng P, Zhang Z Q, Chan C T 2015 Nat. Phys. 11 240

    [45]

    Zhang Z, Teimourpour M, Arkinstall J, Pan M, Miao P, Schomerus H, El Ganainy R, Feng L 2019 Laser & Photonics Rev. 13 1800202

    [46]

    Guo Z, Wang Y, Ke S, Su X, Ren J, Chen H 2024 Adv. Phys. Res. 3 2300125

    [47]

    Poli C, Bellec M, Kuhl U, Mortessagne F, Schomerus H 2015 Nat. Commun. 6 6710

    [48]

    Zhu W, Fang X, Li D, Xiao M, Jing L, Chan C T 2018 Phys. Rev. Lett. 121 124501

    [49]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698

    [50]

    Ezawa M 2021 Phys. Rev. B 104 235420

    [51]

    St Jean P, Goblot V, Galopin E, Lemaître A, Ozawa T, Le Gratiet L, Sagnes I, Bloch J, Amo A 2017 Nat. Photon. 11 651

    [52]

    Guo Z, Jiang H, Sun Y, Li Y, Chen H 2018 Opt. Lett. 43 5142

    [53]

    Kraus Y E, Zilberberg O 2012 Phys. Rev. Lett. 109 116404

    [54]

    Wang Y, Jia Z, Huang T, Geng Y, Yang Z, Lin F. 2025 IEEE Trans. Power Electron 40 10123

    [55]

    Magann A B, Rudinger K M, Grace M D, Sarovar M 2022 Phys. Rev. Lett. 129 250502

    [56]

    Zhang L, Yang Y, Jiang Z, Chen Q, Yan Q, Wu Z, Zhang B, Huangfu J, Chen H 2021 Science Bull. 66 974

    [57]

    Kim M, Jacob Z, Rho J 2020 Light: Sci. Appl. 9 130

    [58]

    Bobylev D A, Tikhonenko D I, Zhirihin D V, Mazanov M, Vakulenko A 2023 Laser & Photonics Rev. 17 2100567

    [59]

    Guo Z, Jiang J, Jiang H, Ren J, Chen H 2021 Phys. Rev. Res. 3 013122

    [60]

    Zangeneh Nejad F, Fleury R 2020 Adv. Mater. 32 2001034

    [61]

    Jiang J, Guo Z, Ding Y, Sun Y, Li Y, Jiang H, Chen H 2018 Opt. Express 26 12891

    [62]

    Guo Z, Yang F, Zhang H, Wu X, Zhu K, Jiang J, Jiang H, Li Y, Chen H, Yang Y, Li Y 2024 Natl. Sci. Rev. 11 nwad172

    [63]

    Guo Z, Zhang T, Song J, Jiang H, Chen H 2021 Photon. Res. 9 574

    [64]

    Guo Z, Jiang J, Wu X, Zhang, H, Hu S, Wang, Yuqian, Li, Y, Yang Y, Chen, H 2023 Fundam. Res. 11 2667

    [65]

    Song J, Yang F, Guo Z, Wu X, Zhu K, Jiang J, Sun Y, Li Y, Chen H 2021 Phys. Rev. Appl. 15 014009

    [66]

    Du L, Liu Y, Li M, Zhou X, Wang S, Zhao Q, Li Z, Tao L, Xiao X, Song K, Zhao X 2024 Phys. Rev. B 110 155415

    [67]

    He L, Lan Z, Yang B, Yao J, Ren Q, You J W, Sha W E, Yang Y, Wu L 2024 Adv. Photonics Nexus 3 016009

    [68]

    Jiang J, Ren J, Guo Z, Zhu W, Long Y, Jiang H, Chen H 2020 Phys. Rev. B 101 165427

    [69]

    Zhu B, Wang Q, Leykam D, Xue H, Wang Q J, Chong Y D 2022 Phys. Rev. Lett. 129 013903

    [70]

    Qin H, Zhang Z, Chen Q, Fleury R 2024 Phys. Rev. Res. 6 013031

    [71]

    Wan L, Zhang H, Li Y, Yang Y, Chen H, Guo Z 2026 Front. Phys. 21 14200

    [72]

    Ma W, Liu Z, Kudyshev Z A, Boltasseva A, Cai W, Liu Y 2021 Nat. Photon. 15 77

    [73]

    GENTY G, SALMELA L, DUDLEY J M, et al. Machine learning and applications in ultrafast photonics [J]. Nature Photonics, 2021, 15(2): 91-101.

    [74]

    Nadell C C, Huang B, Malof J M, Padilla W J 2019 Opt. Express 27 27523

    [75]

    Wang L K, Wang Y Q, Hu S Y, Li Y H, Chen H, Ce W, Guo Z 2025 Prog. Electromagn. Res. 183 59

    [76]

    Hadad Y, Soric J C, Khanikaev A B, Alù A 2018 Nat. Electron. 1 178

    [77]

    Guo Z, Wu X, Ke S, Dong L, Deng F, Jiang H, Chen H 2022 New J. Phys. 24 063001

    [78]

    Liu X, Agarwal G S 2017 Sci. Rep. 7 45015

    [79]

    ywa M 2021 Phys. Rev. B 103 155425

    [80]

    Yang F, Song J, Guo Z, Wu X, Zhu K, Jiang J, Sun Y, Li Y, Chen H 2021 Opt. Express 29 7844

    [81]

    Dobrykh D A, Yulin A V, Slobozhanyuk A P, Poddubny A N, Kivshar Y S 2018 Phys. Rev. Lett. 121 163901

    [82]

    Schindler F, Cook A M, Vergniory M G, Wang Z, Parkin S S P, Bernevig B A, Neupert T 2018 Sci. Adv. 4 eaat0346

    [83]

    Kirsch M S, Zhang Y, Kremer M, Maczewsky L J, Ivanov S K, Kartashov Y V, Torner L, Bauer D, Szameit A, Heinrich M 2021 Nat. Phys. 17 995

    [84]

    Ezawa M 2018 Phys. Rev. Lett. 120 026801

    [85]

    Wei M S, Liao M J, Wang C, Zhu C, Yang Y, Xu J 2023 Opt. Express 31 3427

    [86]

    Wei M S, Wang Y Q, Liao M J, Yang Y, Xu J 2023 Opt. Express 31 39424

    [87]

    On M B, Ashtiani F, Sanchez Jacome D, Perez Lopez D, Yoo S J B, Blanco Redondo A 2024 Nat. Commun. 15 629

    [88]

    Jiang J, Hu S, Guo Z, Ke S, Wu X, Yang F, Sun Y, Chen H 2025 Rev. Phys. 13 100112

    [89]

    Li C, Yang R, Huang X, Fu Q, Fan Y, Zhang F 2024 Phys. Rev. Lett. 132 156601

    [90]

    Wang L, Wang Y, Hu S, Sun Y, Jiang H, Li Y, Yang Y, Chen H, Guo Z 2025 Front. Phys. 20 054201

  • [1] 杨星, 刘梦蛟, 侯佳浩, 李添悦, 王漱明. 拓扑选择性非厄米趋肤效应. 物理学报, doi: 10.7498/aps.74.20250526
    [2] 陈鸿翔, 刘墨点, 范智斌, 陈晓东. 低对称性能谷光子晶体中的拓扑光传输. 物理学报, doi: 10.7498/aps.73.20240040
    [3] 张慧洁, 贺衎. 哈密顿量宇称-时间对称性的刻画. 物理学报, doi: 10.7498/aps.73.20230458
    [4] 张光成, 孙武, 周志鹏, 全秀娥, 叶伏秋. 周期调制四通道光学波导的宇称-时间对称特性调控和动力学研究. 物理学报, doi: 10.7498/aps.73.20240690
    [5] 江翠, 李家锐, 亓迪, 张莲莲. 具有宇称-时间反演对称性的虚势能对T-型石墨烯结构能谱和边缘态的影响. 物理学报, doi: 10.7498/aps.73.20240871
    [6] 王子尧, 陈福家, 郗翔, 高振, 杨怡豪. 非互易拓扑光子学. 物理学报, doi: 10.7498/aps.73.20231850
    [7] 王利凯, 王宇倩, 郭志伟, 江海涛, 李云辉, 羊亚平, 陈鸿. 基于高阶非厄密物理的磁共振无线电能传输研究进展. 物理学报, doi: 10.7498/aps.73.20241079
    [8] 蒋宏帆, 林机, 胡贝贝, 张肖. 非宇称时间对称耦合器中的非局域孤子. 物理学报, doi: 10.7498/aps.72.20230082
    [9] 曲登科, 范毅, 薛鹏. 高维宇称-时间对称系统中的信息恢复与临界性. 物理学报, doi: 10.7498/aps.70.20220511
    [10] 高洁, 杭超. 里德伯原子中非厄米电磁诱导光栅引起的弱光孤子偏折及其操控. 物理学报, doi: 10.7498/aps.71.20220456
    [11] 胡洲, 曾招云, 唐佳, 罗小兵. 周期驱动的二能级系统中的准宇称-时间对称动力学. 物理学报, doi: 10.7498/aps.70.20220270
    [12] 唐原江, 梁超, 刘永椿. 宇称-时间对称与反对称研究进展. 物理学报, doi: 10.7498/aps.71.20221323
    [13] 梅宇涵, 邵越, 杭志宏. 基于紧束缚模型的拓扑物理微波实验验证平台的开发. 物理学报, doi: 10.7498/aps.68.20191452
    [14] 王洪飞, 解碧野, 詹鹏, 卢明辉, 陈延峰. 拓扑光子学研究进展. 物理学报, doi: 10.7498/aps.68.20191437
    [15] 党婷婷, 王娟芬, 安亚东, 刘香莲, 张朝霞, 杨玲珍. 亮孤子在宇称时间对称波导中的传输和控制. 物理学报, doi: 10.7498/aps.64.064211
    [16] 江虹, 刘从彬, 伍春. 认知无线电网络中提高传输层端到端吞吐率的跨层参数配置. 物理学报, doi: 10.7498/aps.62.038804
    [17] 于歆杰, 吴天逸, 李臻. 基于Metglas/PFC磁电层状复合材料的电能无线传输系统. 物理学报, doi: 10.7498/aps.62.058503
    [18] 李鸣, 戴长建, 谢军. 用双光子电离探测技术研究奇宇称的Sm原子光谱. 物理学报, doi: 10.7498/aps.59.3154
    [19] 吴璧如, 徐云飞, 郑幼凤, 胡永炎, 陆杰. 镱的奇宇称自电离谱. 物理学报, doi: 10.7498/aps.39.48
    [20] 刘耀阳. 0→Λ+γ过程与宇称守恒. 物理学报, doi: 10.7498/aps.17.587
计量
  • 文章访问数:  19
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-15

/

返回文章
返回