-
微波热声成像技术作为一种新兴生物医学成像方法,融合了微波成像高对比度与超声成像高分辨率的优点。微波热声显微成像作为其重要分支,在继承其优点的基础上,提供了观察更加精细组织特征的能力, 但传统栅型扫描机制因机械运动干扰微波场分布,需要多次信号平均以保证信噪比,且电机空程移动导致单次成像耗时较长,制约了其实际应用。本文提出并构建了一种基于一维振镜扫描的快速成像系统, 采用振镜-平移台混合架构,通过优化扫描方式, 降低了微波场干扰,同时减少了信号平均次数并缩减了空程耗时,从而提升了成像速度。设计的时序控制算法实现了微波激励、振镜运动与超声检测的精确同步,适配扫描方式优化的图像重建算法有效校正了扫描过程中产生的畸变。分辨率与对比度测试仿体实验,与早期肿瘤模拟离体实验表明,系统在速度提升超过 10倍的同时,保持了成像质量。该方案有效提升了微波热声显微成像效率和稳定性, 为其实验室研究向临床应用转化奠定重要基础。Microwave-induced thermoacoustic imaging, as an emerging biomedical imaging technique, combines the high contrast of microwave imaging with the high spatial resolution of ultrasound imaging. As an important branch of this technology, microwave-induced thermoacoustic microscopy retains these advantages while providing the capability to visualize finer tissue characteristics. However, conventional raster scanning mechanisms introduce interference in microwave field distribution due to mechanical motion, necessitating multiple signal averages to maintain signal-to-noise ratio. Additionally, the idle time during motor movement leads to prolonged single-scan duration, limiting its practical applications. To address these limitations, this paper proposes a rapid imaging system based on one-dimensional galvanometer scanning. The system employs a hybrid galvanometer-translation stage architecture and an optimized scanning strategy to minimize microwave field interference, reduce the number of signal averages, and decrease idle time, ultimately achieving more than a tenfold improvement in imaging speed. A specially designed timing control algorithm ensures precise synchronization of microwave excitation, galvanometer motion, and ultrasound detection, while a reconstruction algorithm adapted to the optimized scanning method effectively corrects distortions generated during the scanning process. System performance was evaluated through phantom and ex vivo tissue experiments. Resolution tests demonstrated hundred-micrometer resolution along all three axes (332 μm × 324 μm × 79 μm), while contrast and depth imaging experiments confirmed its capability to clearly distinguish targets with different conductivities, achieving an effective detection depth of at least 10 mm in tissue. Early tumor mimicking experiments further demonstrated the system's ability to identify lesion boundaries, preliminarily revealing its potential for rapid tumor margin assessment. This approach maintains the imaging quality of microwave-induced thermoacoustic microscopy while enhancing imaging efficiency and system stability, laying a crucial foundation for advancing the technology from laboratory research to clinical applications.
-
Keywords:
- Microwave-induced thermoacoustic imaging /
- microwave-induced thermoacoustic microscopy /
- galvanometer scanning /
- imaging speed
-
[1] Bell A G 1880 Am. J. Sci. s3-20 305.
[2] Olsen R G, Lin J C 1983 Bioelectromagnetics 4 397.
[3] Kruger R A, Kopecky K K, Aisen A M, Reinecke D R, Kruger G A, Kiser W L 1999 Radiology 211 275.
[4] Ku G, Wang L V 2000 Med. Phys. 27 1195.
[5] Ku G, Wang L V 2000 Med. Phys. 27 1195.
[6] Kruger R A, Miller K D, Reynolds H E, Kiser W L, Reinecke D R, Kruger G A 2000 Radiology 216 279.
[7] Kruger R A, Miller K D, Reynolds H E, Kiser W L, Reinecke D R, Kruger G A 2000 Radiology 216 279.
[8] Singhvi A, Boyle K C, Fallahpour M, Khuri-Yakub B T, Arbabian A 2019 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66 1587.
[9] Singhvi A, Boyle K C, Fallahpour M, Khuri-Yakub B T, Arbabian A 2019 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66 1587.
[10] Ren M Y, Cheng Z W, Wu L H, Zhang H M, Zhang S X, Chen X Y 2022 IEEE Trans. Biomed. Eng. 70 175.
[11] Ren M Y, Cheng Z W, Wu L H, Zhang H M, Zhang S X, Chen X Y 2022 IEEE Trans. Biomed. Eng. 70 175.
[12] Wu L H, Cheng Z W, Ma Y Z, Li Y J, Ren M Y, Xing D, Qin H 2021 IEEE Trans. Med. Imaging 41 1080.
[13] Wu L H, Cheng Z W, Ma Y Z, Li Y J, Ren M Y, Xing D, Qin H 2021 IEEE Trans. Med. Imaging 41 1080.
[14] Zhao S X, Wang H H, Li Y J, Nie L M, Zhang S X, Xing D, Qin H 2021 IEEE Trans. Biomed. Eng. 69 725.
[15] Zhao S X, Wang H H, Li Y J, Nie L M, Zhang S X, Xing D, Qin H 2021 IEEE Trans. Biomed. Eng. 69 725.
[16] Liang X, Guo H, Liu Q, Wu C F, Gong Y B, Xi L 2020 Appl. Phys. Lett. 116 013701.
[17] Liang X, Guo H, Liu Q, Wu C F, Gong Y B, Xi L 2020 Appl. Phys. Lett. 116 013701.
[18] Chen Y, Chi Z H, Du S, Fang Q C, Jiang H B 2024 Appl. Phys. Lett. 124 163702.
[19] Chen Y, Chi Z H, Du S, Fang Q C, Jiang H B 2024 Appl. Phys. Lett. 124 163702.
[20] Xu M H, Xu Y, Wang L H V 2003 IEEE Trans. Biomed. Eng. 50 1086.
[21] Xu M H, Xu Y, Wang L H V 2003 IEEE Trans. Biomed. Eng. 50 1086.
[22] Wan P C, Liu S L, Tian R P, Shang X, Peng W T 2023 J. Appl. Phys. 133 103101.
[23] Wan P C, Liu S L, Tian R P, Shang X, Peng W T 2023 J. Appl. Phys. 133 103101.
[24] Liu S L, Zheng Z, Sun X X, Zhao Z Q, Zheng Y J, Jiang H B 2019 IEEE Trans. Biomed. Eng. 67 2206.
[25] Liu S L, Zheng Z, Sun X X, Zhao Z Q, Zheng Y J, Jiang H B 2019 IEEE Trans. Biomed. Eng. 67 2206.
[26] Luo Z X, Li C Z, Liu D T, Wang B S, Zhang L J, Ma Y X 2023 IEEE Trans. Microw. Theory Tech. 71 2652.
[27] Luo Z X, Li C Z, Liu D T, Wang B S, Zhang L J, Ma Y X 2023 IEEE Trans. Microw. Theory Tech. 71 2652.
[28] Evans A L, Ma C, Hagness S C 2022 Biomed. Phys. Eng. Express 8 035020.
[29] Evans A L, Ma C, Hagness S C 2022 Biomed. Phys. Eng. Express 8 035020.
[30] Mast T D, Johnstone D A, Dumoulin C L, Lamba M A, Patch S K 2023 Phys. Med. Biol. 68 025003.
[31] Mast T D, Johnstone D A, Dumoulin C L, Lamba M A, Patch S K 2023 Phys. Med. Biol. 68 025003.
[32] Kruger R A, Kiser W L, Reinecke D R, Kruger G A, Miller K D 2003 Mol. Imaging 2 113.
[33] Kruger R A, Kiser W L, Reinecke D R, Kruger G A, Miller K D 2003 Mol. Imaging 2 113.
[34] Chi Z H, Huang L, Wu D, Long X J, Xu X L, Jiang H B 2022 Med. Phys. 49 84.
[35] Chi Z H, Huang L, Wu D, Long X J, Xu X L, Jiang H B 2022 Med. Phys. 49 84.
[36] Huang L, Zheng Z, Chi Z H, Jiang H B 2021 Med. Phys. 48 4242.
[37] Huang L, Zheng Z, Chi Z H, Jiang H B 2021 Med. Phys. 48 4242.
[38] Xiang H J, Zheng Z, Huang L, Qiu T T, Luo Y, Jiang H B 2021 Med. Phys. 48 1608. Radiographics 26 905.
[39] Xiang H J, Zheng Z, Huang L, Qiu T T, Luo Y, Jiang H B 2021 Med. Phys. 48 1608. Radiology 211 275.
[40] Liang Z, Wang W P, Qiao S Q, Huang L 2022 J. Innov. Opt. Health Sci. 15 2250015.
[41] Niskanen A O, Hassel J, Tikander M, Maijala P, Grönberg L, Helistö P 2009 Appl. Phys. Lett. 95 163701.
[42] Yang X, Huang K 2006 Acta Electron. Sin. 34 356.
[43] Zhang W T, Chen X, Wang Y, Wu L Y, Hu Y D 2010 Res. Explor. Lab. 29 159.
[44] Du S, Qiang T, Chi Z H, Jiang H B 2024 J. Innov. Opt. Health Sci. 17 2450014.
[45] Du J S, Gao Y, Bi X, Qi W Z, Huang L, Rong J 2015 Acta Phys. Sin. 64 034302.
[46] Xie S M, Huang L, Wang X, Chi Z H, Tang Y H, Zheng Z, Jiang H B 2021 J. Mech. Eng. 70 100701.
[47] Cheng Z W, Wu L H, Qiu T S, Duan Y H, Qin H, Hu J 2021 IEEE Trans. Med. Imaging 40 3498.
[48] Zhang Y M, Wang F, Lin L, Ye J 2024 Fenxi Ceshi Xuebao 43 19.
[49] Tang X Y, Fu J, Qin H 2023 J. Innov. Opt. Health Sci. 16 2230014.
[50] Sun M L, Li C Y, Chen R M, Shi J H 2024 Laser Optoelectron. Prog. 61 0618017.
[51] Jeon S, Kim J, Lee D, Baik J W, Kim C 2019 Photoacoustics 15 100141.
[52] Chen Z J, Yang S H, Xing D 2018 Chin. J. Lasers 45 0307008.
[53] Kim J Y, Lee C, Park K, Lim G, Kim C 2015 Sci. Rep. 5 7932.
[54] Qi W Z, Jin T, Rong J, Jiang H B, Xi L 2017 J. Biophotonics 10 1580.
计量
- 文章访问数: 14
- PDF下载量: 1
- 被引次数: 0








下载: