-
为应对未来多变电磁环境对高频宽带信号处理的需求, 突破传统电子器件的带宽限制, 本文提出了一种基于硅基光电子集成平台的可重构微波光子信道化接收芯片. 该芯片采用双级光学处理架构, 前端级联马赫-曾德尔干涉型波分复用器实现粗粒度光谱划分, 规避自由光谱范围严格对齐的复杂性; 核心集成耦合谐振器光波导滤波器阵列作为可调谐带通滤波器, 通过热调耦合系数动态重构带宽(2.25—3.12 GHz), 其20 dB/3 dB形状因子达3.08, 显著提升滚降特性. 仿真验证表明: 该系统支持8—28 GHz或8—36 GHz射频信号的信道化处理, 分割为8个中频子带(1.4—3.6 GHz或2—5 GHz), 聚合带宽覆盖X—K波段; 并通过5 GHz带宽线性调频信号的接收和重构实验证实其宽带信号实时处理能力. 该芯片的高集成度设计与带宽动态重构功能, 为微波光子雷达、多频段射频系统等应用提供了软件定义解决方案, 推动超宽带信号处理向多功能、低功耗方向发展.
To meet the growing demand for high-frequency broadband signal processing in complex electromagnetic environments and to overcome the limitations of traditional electronic systems such as restricted bandwidth, limited response speed, and low integration density, this paper presents a reconfigurable microwave photonic channelized receiver chip implemented on a silicon photonic platform. The proposed architecture adopts a two-stage optical filtering strategy that circumvents the typical strict wavelength alignment requirements in traditional designs, thereby greatly alleviating the challenges of system integration. In the first stage, the cascaded Mach-Zehnder interferometer (MZI)-based wavelength division multiplexers (WDMs) are used to perform Gaussian-shaped filtering of the input optical spectrum with a channel spacing of approximately 200 GHz. The second stage combines an array of coupled resonator optical waveguide (CROW) filters functioning as finely tunable bandpass elements. These CROW filters utilize curved waveguide directional couplers, which are specifically designed to address the issues found in traditional multimode interference (MMI) couplers such as high insertion loss—and in straight directional couplers, which encounter significant coupling dispersion. The optimized curved coupler exhibits an insertion loss below 0.03 dB and a coupling ratio variation of less than 10% across the 1500–1600 nm wavelength band. Filter bandwidth reconfigurability is achieved via thermo-optic tuning of the balanced MZI embedded within each CROW filter, enabling dynamic adjustment of the coupling coefficients. Each filter exhibits a continuously adjustable 3 dB bandwidth ranging from 2.25 GHz to 3.12 GHz, with an excellent 20 dB/3 dB shape factor of 3.08. This performance indicates significantly improved roll-off characteristics compared with the performance of traditional filter designs, leading to enhanced suppression of image frequency components and improved signal separation fidelity. A complete microwave photon channelized receiving link is constructed using an integrated WDM-CROW filter bank. System-level simulations confirm that the architecture provides excellent broadband adaptability, supporting the channelization of radio frequency (RF) signals in two operational bands: 8–28 GHz and 8–36 GHz. The system efficiently decomposes the input wideband RF signal into eight independent intermediate frequency (IF) sub-bands. Within each sub-band, an image rejection ratio (IRR) exceeding 22 dB is maintained. The corresponding IF ranges are 1.4–3.6 GHz when configured for 8–28 GHz RF input, and 2–5 GHz for 8–36 GHz input, covering critical communication and detection bands from X-band to K-band and satisfying the requirements of multi-scenario signal processing. Furthermore, we simulate the reception and reconstruction of a 5 GHz bandwidth linear frequency-modulated (LFM) signal, successfully verifying the chip’s capability in handling wideband waveforms. These results underscore the feasibility of the proposed chip as a high-performance solution for advanced applications such as radar detection and broadband electronic warfare systems, offering a novel, integrated photonic alternative to traditional channelized reception architectures. -
Keywords:
- integrated optics /
- channelized receiver chip /
- bandwidth-reconfigurable optical filter /
- silicon on insulators /
- coupled resonator optical waveguide
-
图 1 基于CROW级联光子滤波器阵列的带宽可重构MPW信道化接收机的系统架构示意图, 其中OFC-SIG为信号光梳; OFC-LO为本振光梳; EFDA为掺铒光纤放大器; PC为偏振控制器; MZM为马赫-曾德尔调制器; WDM为光波分复用器; MRRs为微环滤波器; MMI为多模干涉耦合器; PD为光电探测器
Fig. 1. Schematic diagram of the bandwidth-reconfigurable microwave photonic channelized receiver system based on CROW photonic filter array, where OFC-SIG represents signal Comb; OFC-LO represents ben oscillator comb; EFDA represents erbium-doped fiber amplifier; PC represents polarization controller; MZM represents Mach-Zehnder modulator; WDM represents optical wavelength division multiplexer; MRRs represents microring filters; MMI represents multimode interferometric coupler; PD represents photodetector.
图 8 (a), (b)两个CROW滤波器对LFM信号分别进行光学滤波与切片; (c), (d)两根光梳与本振混频下变频后的电谱响应; (e)下变频后的LFM信号频谱和(f)重构后的时频关系图
Fig. 8. (a), (b) Filtering and slicing of the LFM signal using two CROW optical filters; (c), (d) electrical spectra after down-conversion through mixing between two signal comb lines and the local oscillator; (e) the down-converted LFM signal spectrum in the frequency domain and (f) its up-converted time-frequency diagram.
表 1 基于CROW结构的可调谐平顶带通滤波器的参数和性能
Table 1. Parameters and performance of the flat-top bandpass filter.
Power coupling
ratios3 dB BW
/GHzER
/dBSF FSR
/GHzIL
/dBk1 = 0.097
k2 = 0.0087
k3 = 0.0972.25 48 3.08 57.2 4.4 k1 = 0.113
k2 = 0.011
k3 = 0.1132.62 46 3.14 57.2 4 k1 = 0.147
k2 = 0.014
k3 = 0.1473.12 42 3.1 57.2 3.2 表 2 微波光子信道化接收器性能比较, WBW为工作带宽, CBW为信道带宽, IMRR为图像抑制比
Table 2. Comparison of microwave photonic channelization receiver performance, WBW represents working bandwidth, CBW represents channel bandwidth, IMRR represents image-reject ratio.
Reference Design method Channel
numberWBW/ GHz CBW/
GHzIMRR/
dB[13] BGFP+Fresnel lens 40 1—32 1 — [14] FPF 5 21—25 1 — [15] Microring resonator banks+ 8 8—13.5 1.3 >5 [16] Active and passive MRRs 92 1—9 or 9—18 0.124 6.9 [17] FPF + de-mux 6 8—13 1 >14.4 [18] Double-ring resonator filter 6 1—9 2 — [19] Optical hybrid + IRM 5 13—18 1 >22 [20] Self-interference cancellation 6 17—20 0.5 >31.4 [21] Optical hybrid + IRM 25 8—37 1.2 >34 [22] Wave-shaper 20 0—20 1 — this work CROW banks+ 8 8—36 tunable 2.25—3.12
tunable>22 注: + The design is based on integrated chip. -
[1] McKinney J D 2014 Nature 507 310
Google Scholar
[2] Zhang Z, Liu Y, Stephens T, Eggleton B 2023 Nat. Photonics 17 791
Google Scholar
[3] Dong J W, Zhang F B, Jiao Z K, Sun Q, Li W Z 2020 Opt. Express 28 19113
Google Scholar
[4] Robert Q, Guo N, Li H S, Wu Z Q, Vasu C, Song Y, Hu Z, Zhang P, Chen Z 2009 Sensors 9 6530
Google Scholar
[5] Hadi M U, Awais M, Raza M 2020 International Topical Meeting on Microwave Photonics (MWP) Matsue, Japan, November 24, 2020 p136
[6] Zhang T T, Chen L, Yuan W W, Wu W Q 2017 Aerospace 34 50
[7] Xia X, Yang B, Liu Z Y, An K, Guo K F 2019 Sensors 19 5453
Google Scholar
[8] Marpaung D, Roeloffzen C, Heideman R 2013 Laser Photonics Rev. 7 506
Google Scholar
[9] Liu L, Ye M, Yu Z, Wei X 2023 J. Lightwave Technol. 41 5051
Google Scholar
[10] Capmany, J, Novak, D 2007 Nat. Photonics 1 319
Google Scholar
[11] 许家豪, 王云新, 王大勇, 周涛, 杨锋, 钟欣, 张弘骉, 杨登才 2019 物理学报 68 134204
Google Scholar
Xu J H, Wang Y X, Wang D Y, Zhou T, Yang F, Zhong X, Zhang H B, Yang D C 2019 Acta Phys. Sin. 68 134204
Google Scholar
[12] 王云新, 李虹历, 王大勇, 李静楠, 钟欣, 周涛, 杨登才, 戎路 2017 物理学报 66 098401
Google Scholar
Wang Y X, Li H L, Wang D Y, Li J N, Zhong X, Zhou T, Yang D C, Rong L 2017 Acta Phys. Sin. 66 098401
Google Scholar
[13] Winnall S T, Lindsay A C, Austin M W 2006 IEEE Trans. Microwave Theory Tech. 54 868
Google Scholar
[14] Huang H, Zhang C F, Zhou H, Yang H F, Yuan W C, Qiu K 2018 Opt. Lett. 43 4073
Google Scholar
[15] Lu Z Y, Li J C, Yin F F, Chen H W, Yang S G, Chen M H 2024 Opt. Express 32 16913
Google Scholar
[16] Xu X Y, Tan M X, Wu J Y 2020 J. Lightwave Technol. 38 5116
Google Scholar
[17] Xie X J, Dai Y T, Ji Y, Li Y 2012 IEEE Photonics Technol. Lett. 24 661
Google Scholar
[18] Gu X W, Zhu D, Li S M, Zhao Y J, Pan S L 2014 The 7th IEEE/International Conference on Advanced Infocomm Technology Fuzhou, China, November 14–16, 2014 p240
[19] Tang Z Z, Zhu D, Pan S L 2018 J. Lightwave Technol. 36 4219
Google Scholar
[20] Shi F J, Fan Y Y, Ma B Y, Zhang J, Wang X B, Ge J M 2023 J. Lightwave Technol. 41 627
Google Scholar
[21] Ding J W, Wu Y F, Yang H S, Zhang C, Zhang Y F, He J J, Zhu D, Pan S L 2023 APL Photonics 8 090801
Google Scholar
[22] Hao W H, Dai Y T, Zhou Y, Yin F F, Dai J, Li J Q 2016 IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference Long Beach, CA, USA, October 31–November 3, 2016 p183
[23] Yang G J, Ming C Z, Dai G D, Li J Q 2024 ACS Photonics 11 4390
[24] Tan H Y, Wang J, Ke W, Zhang X, Zhao Z K, Lin Z J, Cai X L 2023 Opt. Lett. 48 1946
Google Scholar
[25] Yi Q Y, Zheng S, Yan Z W, Cheng G L, Xu F L, Li Q Y, Shen L 2022 Opt. Express 30 28232
Google Scholar
[26] Zou J, Ma X, Xia X, Hu J H, Wang C H, Zhang M 2020 J. Lightwave Technol. 38 4447
Google Scholar
[27] Zhang X, Zhao L Y, Zhang J H, Zhang J F, Zhang Z H 2024 J. Lightwave Technol. 42 7725
Google Scholar
[28] 刘宇航, 林曈, 李少波, 于文琦, 马向, 梁晓东, 恽斌峰 2023 物理学报 72 084208
Google Scholar
Liu Y H, Lin T, Li S B, Yu W Q, Ma X, Liang X D, Yun B F 2023 Acta Phys. Sin. 72 084208
Google Scholar
[29] 任光辉, 陈少武, 曹彤彤 2012 物理学报 61 034215
Google Scholar
Ren G H, Chen S W, Cao T T 2012 Acta Phys. Sin. 61 034215
Google Scholar
[30] Gu J M, Zhang S J, Shao Q C, Li M Y, Ma X Y, He J J 2024 Photonics 11 870
Google Scholar
计量
- 文章访问数: 324
- PDF下载量: 5
- 被引次数: 0








下载: