-
为应对未来多变电磁环境对高频宽带信号处理的需求,突破传统电子器件的带宽限制,本文提出了一种基于硅基光电子集成平台的可重构微波光子信道化接收芯片。该芯片采用双级光学处理架构,前端级联MZI型波分复用器实现粗粒度光谱划分,规避自由光谱范围严格对齐的复杂性;核心集成耦合谐振器光波导滤波器阵列作为可调谐带通滤波器,通过热调耦合系数动态重构带宽(2.25-3.12GHz),其20dB/3dB形状因子达3.08,显著提升滚降特性。仿真验证表明:该系统支持8–28GHz或8–36GHz射频信号的信道化处理,分割为8个中频子带(1.4–3.6GHz或2–5GHz),聚合带宽覆盖X至K波段;并通过5GHz带宽线性调频信号的接收和重构实验证实其宽带信号实时处理能力。该芯片的高集成度设计与带宽动态重构功能,为微波光子雷达、多频段射频系统等应用提供了软件定义解决方案,推动超宽带信号处理向多功能、低功耗方向发展。To meet the growing demand for high-frequency broadband signal processing in complex electromagnetic environments and to overcome the limitations of conventional electronic systems—such as restricted bandwidth, limited response speed, and low integration density—this paper presents a reconfigurable microwave photonic channelized receiver chip implemented on a silicon photonic platform. The proposed architecture employs a two-stage optical filtering strategy that circumvents the stringent wavelength alignment requirements typical of conventional designs, thereby significantly easing system integration challenges. In the first stage, cascaded Mach–Zehnder interferometer (MZI)-based wavelength division multiplexers (WDMs) are used to perform Gaussian-shaped filtering of the input optical spectrum with a channel spacing of approximately 200 GHz. The second stage incorporates an array of coupled resonator optical waveguide (CROW) filters functioning as finely tunable bandpass elements. These CROW filters utilize curved waveguide directional couplers, which are specifically designed to mitigate issues found in conventional multimode interference (MMI) couplers—such as high insertion loss—and in straight directional couplers, which suffer from significant coupling dispersion. The optimized curved coupler exhibits an insertion loss below 0.03 dB and less than 10% variation in coupling ratio across the 1500–1600 nm wavelength band. Filter bandwidth reconfigurability is achieved via thermo-optic tuning of the balanced MZI embedded within each CROW filter, allowing dynamic adjustment of the coupling coefficients. Each filter demonstrates a continuously tunable 3 dB bandwidth ranging from 2.25 GHz to 3.12 GHz, with a superior 20 dB/3 dB shape factor of 3.08. This performance signifies markedly improved roll-off characteristics compared to traditional filter designs, leading to enhanced suppression of image frequency components and improved signal separation fidelity.
A complete microwave photonic channelized reception link is constructed using the integrated WDM-CROW filter bank. System-level simulations confirm that the architecture offers remarkable broadband adaptability, supporting the channelization of radio frequency (RF) signals across two operational bands: 8–28 GHz and 8–36 GHz. The system efficiently decomposes the input wideband RF signal into eight independent intermediate frequency (IF) sub-bands. Within each sub-band, an image rejection ratio (IRR) exceeding 22 dB is maintained. The corresponding IF ranges are 1.4–3.6 GHz (when configured for 8–28 GHz RF input) and 2–5 GHz (for 8–36 GHz input), covering critical communication and detection bands from X-band to K-band and satisfying multi-scenario signal processing requirements. Furthermore, we simulate the reception and reconstruction of a 5 GHz bandwidth linear frequency-modulated (LFM) signal, successfully verifying the chip’s capability in handling wideband waveforms. These results underscore the feasibility of the proposed chip as a high-performance solution for advanced applications such as radar detection and broadband electronic warfare systems, offering a novel, integrated photonic alternative to conventional channelized reception architectures.-
Keywords:
- integrated optics /
- channelized receiver chip /
- bandwidth-reconfigurable optical filter /
- SOI /
- CROW
-
[1] McKinney J D 2014 Nature 507, 310.
[2] Zhang Z, Liu Y, Stephens T, Eggleton B 2023 Nat. Photonics 17, 791.
[3] Dong J W, Zhang F B, Jiao Z K, Sun Q, Li W Z 2020 Opt. Express 28, 19113.
[4] Robert Q, Guo N, Li H S, Wu Z Q, Vasu C, Song Y, Hu Z, Zhang P, Chen Z 2009 Sensors 9, 6530.
[5] Hadi M U, Awais M, Raza M 2020 International Topical Meeting on Microwave Photonics (MWP), Matsue, Japan, 2020 p136.
[6] Zhang T T, Chen L, Yuan W W, Wu W Q 2017 Aerospace, 34 50.
[7] Xia X, Yang B, Liu Z Y, An K, Guo K F 2019 Sensors, 19 5453.
[8] Marpaung D, Roeloffzen C, Heideman R 2013 Laser Photonics Rev. 7 506.
[9] Liu L, Ye M, Yu Z, Wei X 2023 J. Lightwave Technol. 41 5051.
[10] Capmany, J, Novak, D 2007 Nat. Photonics 1, 319.
[11] Xu J H, Wang Y X, Wang D Y, Zhou T, Yang F, Zhong X, Zhang H B, Yang D C 2019 Acta Phys. Sin. 68 134204 (in Chinese)[许家豪, 王云新, 王大勇, 周涛, 杨锋, 钟欣, 张弘骉, 杨登才 2019 物理学报, 68, 134204].
[12] Wang Y X, Li H L, Wang D Y, Li J N, Zhong X, Zhou T, Yang D C, Rong L 2017 Acta Phys. Sin. 66 098401 (in Chinese)[王云新, 李虹历, 王大勇, 李静楠, 钟欣, 周涛, 杨登才, 戎路. 2017 物理学报, 66, 098401].
[13] Winnall S T, Lindsay A C, Austin M W 2006 IEEE Trans. Microwave Theory Tech. 54 868.
[14] Huang H, Zhang C F, Zhou H, Yang H F, Yuan W C, Qiu K 2018 Opt. Lett. 43, 4073.
[15] Lu Z Y, Li J C, Yin F F, Chen H W, Yang S G, and Chen M H 2024 Opt. Express 32, 16913.
[16] Xu X Y, Tan M X, Wu J Y 2020 J. Lightwave Technol 38, 5116.
[17] Xie X J, Dai Y T, Ji Y, Li Y 2012 IEEE Photonics Technol. Lett. 24, 661.
[18] Gu X W, Zhu D, Li S M, Zhao Y J, Pan S L, 2014 The 7th IEEE Int. Conf. Adv. Infocomm Technol, Fuzhou, China, 2014 p240.
[19] Tang Z Z, Zhu D, Pan S L 2018 J. Lightwave Technol, 36, 4219.
[20] Shi F J, Fan Y Y, Ma B Y, Zhang J, Wang X B, Ge J M 2023 J. Lightwave Technol, 41, 627.
[21] Ding J W, Wu Y F, Yang H S, Zhang C, Zhang Y F, He J J, Zhu D, Pan S L 2023 APL Photonics, 8, 090801.
[22] Hao W H, Dai Y T, Zhou Y, Yin F F, Dai J, Li J Q 2016 IEEE Avionics Veh. Fiber-Opt. Photon. Conf. Long Beach, CA, USA, 2016 183.
[23] Yang G J, Ming C Z, Dai G D, Li J Q 2024 ACS Photonics 11, 4390.
[24] Tan H Y, Wang J, Ke W, Zhang X, Zhao Z K, Lin Z J, Cai X L 2023 Opt. Lett. 48, 1946.
[25] Yi Q Y, Zheng S, Yan Z W, Cheng G L, Xu F L, Li Q Y, Shen L 2022 Opt. Express 30, 28232.
[26] Zou J, Ma X, Xia X, Hu J H, Wang C H, Zhang M, 2020 J. Lightwave Technol, 38, 4447.
[27] Zhang X, Zhao L Y, Zhang J H, Zhang J F, Zhang Z H 2024 J. Lightwave Technol, 42, 7725.
[28] Liu Y H, Lin T, Li S B, Yu W Q, Ma X, Liang X D, Yun B F 2023 Acta Phys. Sin. 72, 084208 (in Chinese)[刘宇航, 林曈, 李少波, 于文琦, 马向, 梁晓东, 恽斌峰. 可调反射器辅助的可重构微环光滤波器. 2023 物理学报, 72, 084208].
[29] Ren G H, Chen S W, Cao T T 2012 Acta Phys. Sin. 61, 034215. (in Chinese) [任光辉, 陈少武, 曹彤彤. 一种热光可调谐级联微环滤波器的理论分析. 2012 物理学报, 61, 034215].
[30] Gu J M, Zhang S J, Shao Q C, Li M Y, Ma X Y, He J J 2024 Photonics. 11 870.
计量
- 文章访问数: 6
- PDF下载量: 0
- 被引次数: 0








下载: