搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于耦合谐振器光波导滤波器阵列的可重构微波光子信道化接收芯片仿真设计

范岩 李柳 郭政俣 王浩然 熊子洋 邓皓 林曈 吕俊鹏 倪振华

引用本文:
Citation:

基于耦合谐振器光波导滤波器阵列的可重构微波光子信道化接收芯片仿真设计

范岩, 李柳, 郭政俣, 王浩然, 熊子洋, 邓皓, 林曈, 吕俊鹏, 倪振华

Simulation design of reconfigurable microwave photonic channelized receiver based on coupled-resonator optical waveguide filter array

FAN Yan, LI Liu, GUO Zhengyu, WANG Haoran, XIONG Ziyang, DENG Hao, LIN Tong, LU Junpeng, NI Zhenhua
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 为应对未来多变电磁环境对高频宽带信号处理的需求, 突破传统电子器件的带宽限制, 本文提出了一种基于硅基光电子集成平台的可重构微波光子信道化接收芯片. 该芯片采用双级光学处理架构, 前端级联马赫-曾德尔干涉型波分复用器实现粗粒度光谱划分, 规避自由光谱范围严格对齐的复杂性; 核心集成耦合谐振器光波导滤波器阵列作为可调谐带通滤波器, 通过热调耦合系数动态重构带宽(2.25—3.12 GHz), 其20 dB/3 dB形状因子达3.08, 显著提升滚降特性. 仿真验证表明: 该系统支持8—28 GHz或8—36 GHz射频信号的信道化处理, 分割为8个中频子带(1.4—3.6 GHz或2—5 GHz), 聚合带宽覆盖X—K波段; 并通过5 GHz带宽线性调频信号的接收和重构实验证实其宽带信号实时处理能力. 该芯片的高集成度设计与带宽动态重构功能, 为微波光子雷达、多频段射频系统等应用提供了软件定义解决方案, 推动超宽带信号处理向多功能、低功耗方向发展.
    To meet the growing demand for high-frequency broadband signal processing in complex electromagnetic environments and to overcome the limitations of traditional electronic systems such as restricted bandwidth, limited response speed, and low integration density, this paper presents a reconfigurable microwave photonic channelized receiver chip implemented on a silicon photonic platform. The proposed architecture adopts a two-stage optical filtering strategy that circumvents the typical strict wavelength alignment requirements in traditional designs, thereby greatly alleviating the challenges of system integration. In the first stage, the cascaded Mach-Zehnder interferometer (MZI)-based wavelength division multiplexers (WDMs) are used to perform Gaussian-shaped filtering of the input optical spectrum with a channel spacing of approximately 200 GHz. The second stage combines an array of coupled resonator optical waveguide (CROW) filters functioning as finely tunable bandpass elements. These CROW filters utilize curved waveguide directional couplers, which are specifically designed to address the issues found in traditional multimode interference (MMI) couplers such as high insertion loss—and in straight directional couplers, which encounter significant coupling dispersion. The optimized curved coupler exhibits an insertion loss below 0.03 dB and a coupling ratio variation of less than 10% across the 1500–1600 nm wavelength band. Filter bandwidth reconfigurability is achieved via thermo-optic tuning of the balanced MZI embedded within each CROW filter, enabling dynamic adjustment of the coupling coefficients. Each filter exhibits a continuously adjustable 3 dB bandwidth ranging from 2.25 GHz to 3.12 GHz, with an excellent 20 dB/3 dB shape factor of 3.08. This performance indicates significantly improved roll-off characteristics compared with the performance of traditional filter designs, leading to enhanced suppression of image frequency components and improved signal separation fidelity.A complete microwave photon channelized receiving link is constructed using an integrated WDM-CROW filter bank. System-level simulations confirm that the architecture provides excellent broadband adaptability, supporting the channelization of radio frequency (RF) signals in two operational bands: 8–28 GHz and 8–36 GHz. The system efficiently decomposes the input wideband RF signal into eight independent intermediate frequency (IF) sub-bands. Within each sub-band, an image rejection ratio (IRR) exceeding 22 dB is maintained. The corresponding IF ranges are 1.4–3.6 GHz when configured for 8–28 GHz RF input, and 2–5 GHz for 8–36 GHz input, covering critical communication and detection bands from X-band to K-band and satisfying the requirements of multi-scenario signal processing. Furthermore, we simulate the reception and reconstruction of a 5 GHz bandwidth linear frequency-modulated (LFM) signal, successfully verifying the chip’s capability in handling wideband waveforms. These results underscore the feasibility of the proposed chip as a high-performance solution for advanced applications such as radar detection and broadband electronic warfare systems, offering a novel, integrated photonic alternative to traditional channelized reception architectures.
  • 图 1  基于CROW级联光子滤波器阵列的带宽可重构MPW信道化接收机的系统架构示意图, 其中OFC-SIG为信号光梳; OFC-LO为本振光梳; EFDA为掺铒光纤放大器; PC为偏振控制器; MZM为马赫-曾德尔调制器; WDM为光波分复用器; MRRs为微环滤波器; MMI为多模干涉耦合器; PD为光电探测器

    Fig. 1.  Schematic diagram of the bandwidth-reconfigurable microwave photonic channelized receiver system based on CROW photonic filter array, where OFC-SIG represents signal Comb; OFC-LO represents ben oscillator comb; EFDA represents erbium-doped fiber amplifier; PC represents polarization controller; MZM represents Mach-Zehnder modulator; WDM represents optical wavelength division multiplexer; MRRs represents microring filters; MMI represents multimode interferometric coupler; PD represents photodetector.

    图 2  (a)高斯型8通道(解)多路复用器的示意; (b) 8通道透过光谱

    Fig. 2.  (a) Schematic diagram of a Gaussian 8-channel (solution) multiplexer; (b) 8-channel transmission spectra.

    图 3  CROW型带宽可调光子滤波器原理与结构示意图(各节点对应传输矩阵方法分析端口)

    Fig. 3.  Schematic diagram of the principle and structure of CROW bandwidth tunable photonic filter.

    图 4  (a)弯曲定向耦合器的结构示意图; (b) 1550 nm下的模场分布图; (c)耦合比例以及插入损耗随波长的关系

    Fig. 4.  (a) Schematic diagram of the designed curved DC; (b) mode field diagram at the wavelength of 1550 nm; (c) coupling ratio and insertion loss versus the wavelength.

    图 5  (a)不同耦合系数下的平顶带通滤波器; (b) 2.25 GHz/3 dB带宽的平顶带通滤波器光谱响应曲线

    Fig. 5.  (a) Flat-top bandpass filter in different configurations; (b) flat-top bandpass filter with 3 dB bandwidth and 2.25 GHz.

    图 6  当3 dB-BW@2.2 GHz时, (a)镜频抑制比和(b)射频信号与输出通带的关系

    Fig. 6.  (a) Image frequency rejection ratio and (b) relationship between the RF signal and the output passband at 3 dB-BW@2.2 GHz.

    图 7  当3 dB-BW@3.1 GHz时, (a)通带内镜频抑制比和(b)射频信号与输出通带的关系

    Fig. 7.  (a) Image frequency rejection ratio and (b) relationship between the RF signal and the output passband at 3 dB-BW@3.1 GHz.

    图 8  (a), (b)两个CROW滤波器对LFM信号分别进行光学滤波与切片; (c), (d)两根光梳与本振混频下变频后的电谱响应; (e)下变频后的LFM信号频谱和(f)重构后的时频关系图

    Fig. 8.  (a), (b) Filtering and slicing of the LFM signal using two CROW optical filters; (c), (d) electrical spectra after down-conversion through mixing between two signal comb lines and the local oscillator; (e) the down-converted LFM signal spectrum in the frequency domain and (f) its up-converted time-frequency diagram.

    图 9  所提出的信道化器中的子信道SFDR结果

    Fig. 9.  SFDR calculation for sub-channels in the proposed channelizer.

    表 1  基于CROW结构的可调谐平顶带通滤波器的参数和性能

    Table 1.  Parameters and performance of the flat-top bandpass filter.

    Power coupling
    ratios
    3 dB BW
    /GHz
    ER
    /dB
    SF FSR
    /GHz
    IL
    /dB
    k1 = 0.097
    k2 = 0.0087
    k3 = 0.097
    2.25 48 3.08 57.2 4.4
    k1 = 0.113
    k2 = 0.011
    k3 = 0.113
    2.62 46 3.14 57.2 4
    k1 = 0.147
    k2 = 0.014
    k3 = 0.147
    3.12 42 3.1 57.2 3.2
    下载: 导出CSV

    表 2  微波光子信道化接收器性能比较, WBW为工作带宽, CBW为信道带宽, IMRR为图像抑制比

    Table 2.  Comparison of microwave photonic channelization receiver performance, WBW represents working bandwidth, CBW represents channel bandwidth, IMRR represents image-reject ratio.

    ReferenceDesign methodChannel
    number
    WBW/ GHzCBW/
    GHz
    IMRR/
    dB
    [13]BGFP+Fresnel lens401—321
    [14]FPF521—251
    [15]Microring resonator banks+88—13.51.3>5
    [16]Active and passive MRRs921—9 or 9—180.1246.9
    [17]FPF + de-mux68—131>14.4
    [18]Double-ring resonator filter61—92
    [19]Optical hybrid + IRM513—181>22
    [20]Self-interference cancellation617—200.5>31.4
    [21]Optical hybrid + IRM258—371.2>34
    [22]Wave-shaper200—201
    this workCROW banks+88—36 tunable2.25—3.12
    tunable
    >22
    注: + The design is based on integrated chip.
    下载: 导出CSV
  • [1]

    McKinney J D 2014 Nature 507 310Google Scholar

    [2]

    Zhang Z, Liu Y, Stephens T, Eggleton B 2023 Nat. Photonics 17 791Google Scholar

    [3]

    Dong J W, Zhang F B, Jiao Z K, Sun Q, Li W Z 2020 Opt. Express 28 19113Google Scholar

    [4]

    Robert Q, Guo N, Li H S, Wu Z Q, Vasu C, Song Y, Hu Z, Zhang P, Chen Z 2009 Sensors 9 6530Google Scholar

    [5]

    Hadi M U, Awais M, Raza M 2020 International Topical Meeting on Microwave Photonics (MWP) Matsue, Japan, November 24, 2020 p136

    [6]

    Zhang T T, Chen L, Yuan W W, Wu W Q 2017 Aerospace 34 50

    [7]

    Xia X, Yang B, Liu Z Y, An K, Guo K F 2019 Sensors 19 5453Google Scholar

    [8]

    Marpaung D, Roeloffzen C, Heideman R 2013 Laser Photonics Rev. 7 506Google Scholar

    [9]

    Liu L, Ye M, Yu Z, Wei X 2023 J. Lightwave Technol. 41 5051Google Scholar

    [10]

    Capmany, J, Novak, D 2007 Nat. Photonics 1 319Google Scholar

    [11]

    许家豪, 王云新, 王大勇, 周涛, 杨锋, 钟欣, 张弘骉, 杨登才 2019 物理学报 68 134204Google Scholar

    Xu J H, Wang Y X, Wang D Y, Zhou T, Yang F, Zhong X, Zhang H B, Yang D C 2019 Acta Phys. Sin. 68 134204Google Scholar

    [12]

    王云新, 李虹历, 王大勇, 李静楠, 钟欣, 周涛, 杨登才, 戎路 2017 物理学报 66 098401Google Scholar

    Wang Y X, Li H L, Wang D Y, Li J N, Zhong X, Zhou T, Yang D C, Rong L 2017 Acta Phys. Sin. 66 098401Google Scholar

    [13]

    Winnall S T, Lindsay A C, Austin M W 2006 IEEE Trans. Microwave Theory Tech. 54 868Google Scholar

    [14]

    Huang H, Zhang C F, Zhou H, Yang H F, Yuan W C, Qiu K 2018 Opt. Lett. 43 4073Google Scholar

    [15]

    Lu Z Y, Li J C, Yin F F, Chen H W, Yang S G, Chen M H 2024 Opt. Express 32 16913Google Scholar

    [16]

    Xu X Y, Tan M X, Wu J Y 2020 J. Lightwave Technol. 38 5116Google Scholar

    [17]

    Xie X J, Dai Y T, Ji Y, Li Y 2012 IEEE Photonics Technol. Lett. 24 661Google Scholar

    [18]

    Gu X W, Zhu D, Li S M, Zhao Y J, Pan S L 2014 The 7th IEEE/International Conference on Advanced Infocomm Technology Fuzhou, China, November 14–16, 2014 p240

    [19]

    Tang Z Z, Zhu D, Pan S L 2018 J. Lightwave Technol. 36 4219Google Scholar

    [20]

    Shi F J, Fan Y Y, Ma B Y, Zhang J, Wang X B, Ge J M 2023 J. Lightwave Technol. 41 627Google Scholar

    [21]

    Ding J W, Wu Y F, Yang H S, Zhang C, Zhang Y F, He J J, Zhu D, Pan S L 2023 APL Photonics 8 090801Google Scholar

    [22]

    Hao W H, Dai Y T, Zhou Y, Yin F F, Dai J, Li J Q 2016 IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference Long Beach, CA, USA, October 31–November 3, 2016 p183

    [23]

    Yang G J, Ming C Z, Dai G D, Li J Q 2024 ACS Photonics 11 4390

    [24]

    Tan H Y, Wang J, Ke W, Zhang X, Zhao Z K, Lin Z J, Cai X L 2023 Opt. Lett. 48 1946Google Scholar

    [25]

    Yi Q Y, Zheng S, Yan Z W, Cheng G L, Xu F L, Li Q Y, Shen L 2022 Opt. Express 30 28232Google Scholar

    [26]

    Zou J, Ma X, Xia X, Hu J H, Wang C H, Zhang M 2020 J. Lightwave Technol. 38 4447Google Scholar

    [27]

    Zhang X, Zhao L Y, Zhang J H, Zhang J F, Zhang Z H 2024 J. Lightwave Technol. 42 7725Google Scholar

    [28]

    刘宇航, 林曈, 李少波, 于文琦, 马向, 梁晓东, 恽斌峰 2023 物理学报 72 084208Google Scholar

    Liu Y H, Lin T, Li S B, Yu W Q, Ma X, Liang X D, Yun B F 2023 Acta Phys. Sin. 72 084208Google Scholar

    [29]

    任光辉, 陈少武, 曹彤彤 2012 物理学报 61 034215Google Scholar

    Ren G H, Chen S W, Cao T T 2012 Acta Phys. Sin. 61 034215Google Scholar

    [30]

    Gu J M, Zhang S J, Shao Q C, Li M Y, Ma X Y, He J J 2024 Photonics 11 870Google Scholar

  • [1] 张伊祎, 韦雪玲, 农洁, 马汉斯, 叶子阳, 徐文杰, 张振荣, 杨俊波. 基于直接二进制搜索算法设计的超紧凑In2Se3可调控功率分束器. 物理学报, doi: 10.7498/aps.72.20230459
    [2] 刘宇航, 林曈, 李少波, 于文琦, 马向, 梁晓东, 恽斌峰. 可调反射器辅助的可重构微环光滤波器. 物理学报, doi: 10.7498/aps.72.20222384
    [3] 陆梦佳, 恽斌峰. 基于硅基砖砌型亚波长光栅的紧凑型模式转换器. 物理学报, doi: 10.7498/aps.72.20230673
    [4] 王硕, 常永伟, 陈静, 王本艳, 何伟伟, 葛浩. 新型绝缘体上硅静态随机存储器单元总剂量效应. 物理学报, doi: 10.7498/aps.68.20190405
    [5] 彭超, 恩云飞, 李斌, 雷志锋, 张战刚, 何玉娟, 黄云. 绝缘体上硅金属氧化物半导体场效应晶体管中辐射导致的寄生效应研究. 物理学报, doi: 10.7498/aps.67.20181372
    [6] 秦晨, 余辉, 叶乔波, 卫欢, 江晓清. 基于绝缘体上硅的一种改进的Mach-Zehnder声光调制器. 物理学报, doi: 10.7498/aps.65.014304
    [7] 刘远, 陈海波, 何玉娟, 王信, 岳龙, 恩云飞, 刘默寒. 电离辐射对部分耗尽绝缘体上硅器件低频噪声特性的影响. 物理学报, doi: 10.7498/aps.64.078501
    [8] 林建潇, 吴九汇, 刘爱群, 陈喆, 雷浩. 光梯度力驱动的纳米硅基光开关. 物理学报, doi: 10.7498/aps.64.154209
    [9] 王霆, 张建军, Huiyun Liu. 硅基III-V族量子点激光器的发展现状和前景. 物理学报, doi: 10.7498/aps.64.204209
    [10] 石艳梅, 刘继芝, 姚素英, 丁燕红, 张卫华, 代红丽. 具有L型源极场板的双槽绝缘体上硅高压器件新结构. 物理学报, doi: 10.7498/aps.63.237305
    [11] 唐雄贵, 廖进昆, 李和平, 刘永, 刘永智. 基于热膨胀效应的可调光功率分束器设计. 物理学报, doi: 10.7498/aps.62.024218
    [12] 杨彪, 李智勇, 肖希, Nemkova Anastasia, 余金中, 俞育德. 硅基光栅耦合器的研究进展. 物理学报, doi: 10.7498/aps.62.184214
    [13] 贾智鑫, 段欣, 吕婷婷, 郭亚楠, 薛文瑞. 领结形中空表面等离子体波导的传输特性. 物理学报, doi: 10.7498/aps.60.057301
    [14] 杨薇, 刘迎, 肖立峰, 杨兆祥, 潘建旋. 声光可调谐环形腔掺铒光纤激光器. 物理学报, doi: 10.7498/aps.59.1030
    [15] 陈兆震, 徐则达. 在一种新的聚合物材料上刻写正弦相位波导光栅及其特性研究. 物理学报, doi: 10.7498/aps.59.3264
    [16] 郭亚楠, 薛文瑞, 张文梅. 双椭圆纳米金属棒构成的表面等离子体波导的传输特性分析. 物理学报, doi: 10.7498/aps.58.4168
    [17] 杨薇, 刘迎, 肖立峰, 高树理. 两级串联声光可调谐滤波器旁瓣抑制的研究. 物理学报, doi: 10.7498/aps.58.328
    [18] 邵公望, 戴亚军, 金国良. 抽运光与信号光的光强重叠因子和掺铒玻璃波导放大器的增益特性. 物理学报, doi: 10.7498/aps.58.2488
    [19] 曾维友, 谢 康, 姜海明, 陈 凯. 基于TE-TM模变换的新型相位自补偿磁光隔离器. 物理学报, doi: 10.7498/aps.57.3607
    [20] 孙一翎, 潘剑侠. 多模干涉耦合器中重叠像相干相消现象分析. 物理学报, doi: 10.7498/aps.56.3300
计量
  • 文章访问数:  324
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-10
  • 修回日期:  2025-09-27
  • 上网日期:  2025-11-12

/

返回文章
返回