搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类分段光滑不连续映象中的边界碰撞分岔和余维分岔

邓浩洲 王力可 朱兆瑞 王恒通 屈世显

引用本文:
Citation:

一类分段光滑不连续映象中的边界碰撞分岔和余维分岔

邓浩洲, 王力可, 朱兆瑞, 王恒通, 屈世显

The Bonder Collision Bifurcations and Co-dimensional Bifurcations in A Class of Piecewise-Smooth Discontinuous Maps

DENG Haozhou WANG Like ZHU Zhaorui WANG Hengtong QU Shi-Xian,
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文研究了一类分段光滑不连续一维映象的动力学,该映象左支是一线性函数,右支是指数为$z$的幂率函数。在$x=0$处存在间断$[\mu,\mu+\delta]$,其中$\mu$为控制参数。当周期轨道失稳时,系统会进入混沌状态。而不连续性的出现导致了边界碰撞分岔的发生,可以使稳定的周期轨道转变为混沌状态或者另外一个稳定的周期状态。在这类转变点的附近,常常伴随着吸引子共存现象。 此外,随控制参数减小出现周期递增现象。得到了求解这类不连续映象在任意参数$z$和$\delta$下边界碰撞分岔临界控制参数的一般方法,将其归结为求解无量纲控制参数($\mu/\mu_0$,其中$\mu_0$为$\delta=0$时的控制参数)的代数方程,该方程对于简单的有理数或者较小的整数$z$,可以解析求解;对于任意实数$z$,可以数值求解。据此,我们解析得到了$L^{n-1}R$周期轨道的稳定性和边界碰撞分岔的临界控制参数。基于稳定性和边界碰撞分岔的解析分析, 获得了双参数$\mu-\delta$平面中系统动力学的相平面, 讨论了系统的动力学行为,发现了三类余维-2分岔点, 并给出了其坐标通式。 同时,在相平面中还发现了余维分岔点的融合,构成一类特殊的三相点,并解析得到其存在的条件。
    The investigation of chaos is an important field of science and has got many significant achievements. In the earlier age of the field, the main focus is on the study of the systems that are smooth everywhere. Less attention has been paid to nonsmooth systems. Nonsmooth dynamical systems are broadly appeared in practices, such as impact oscillators, relaxation oscillators, switch circuits, neuron firing, epidemic and even economic models, and have become an active field of study recently. The typical characteristics of those systems is the abruptly variation of the dynamics after slowly evolving over a longer time. Piecewise smooth maps are a type of important models and often employed to describe the dynamics of those systems. Among them, much attention is paid to a class of generally one dimensional piecewise linear discontinuous maps since they are easy to hand and can display rich classes of dynamical phenomena with new characteristics.
    Enclosed in this work is a discontinuous two-piece mapping function. The left branch is a linear function with slope $\alpha$, and the right is a power law function with exponent $z$. There is a gap confined by $[\mu,\mu+\delta]$ at $x=0$, where $\mu$ is the control parameter, and $\delta$ is the with of the gap. Even though the dynamics of nonsmooth and continuous maps under some special $z$ values have been intensively studied, while their discontinuous counterparts have not been investigated under arbitrary $z$ and discontinuous gap $\delta$. The appearance of the discontinuity may induce border collision bifurcations. The interplay between the bifurcations associated with stability analysis and the border collision bifurcations may produce complex dynamics with new characteristics. Therefore, the investigation on the dynamics of those maps are carried out in this paper, in which the periodic increments, periodic adding and coexistence of attractors are observed. The border collision bifurcation often interrupts a stable periodic orbit and make it transform to a chaotic state or another periodic orbit. In the neighborhood of critical parameters of this bifurcation, there often occurs the coexistence of a periodic orbit with a chaotical or another periodic attractor. A general approach is proposed to analytically and numerically calculate the critical control parameters at which the border collision bifurcations happen, which transform the problem into the solution of an algebraic equation of dimensionless control parameter $\mu/\mu_0$, where $\mu_0$ is the critical control parameter when $\delta=0$. The solution can be obtained analytically when $z$ is a simple rational number or small integer, and numerically for an arbitrary real number. By this way, the stability condition and critical control parameters for the periodic orbit of type $L^{n-1}R$ are analytically or numerically obtained under the arbitrary exponent $z$ and discontinuous gap $\delta$. The results are accordance with the numerical simulations very well. Based on the stability and border collision bifurcation analysis, the phase diagrams in the plane of two dimensional parameters $\mu-\delta$ are built for different ranges of $z$. Their dynamical behaviors are discussed, and three types of co-dimension-2 bifurcations are observed, and the general expressions for the coordinates at which those phenomena occur are obtained in the phase plane. Meanwhile, a specular tripe-point induced by merging of co-dimension-2 bifurcation points $\mathrm{BC-flip}$ and $\mathrm{BC-BC}$ is observed in the phase plane, and the condition for the appearance of it is analytical obtained.
  • [1]

    Makarenkov O, Lamb J S W 2012 Physica D: Nonlinear Phenomena 241 1826

    [2]

    Qin Z Y, Yang J C, Banerjee S, Jiang G R 2011 Discrete and Continuous Dynamical Systems-B 16 547

    [3]

    Biswas D, Seth S, Bor M 2020 International Journal of Bifurcation and Chaos 30 2050018

    [4]

    Metri R A, Mounica M, Rajpathak B A 2020 In 2020 IEEE First International Conference on Smart Technologies for Power, Energy and Control (STPEC) (IEEE), pp 1–6

    [5]

    Metri R, Rajpathak B, Pillai H 2023 Nonlinear Dynamics 111 9395

    [6]

    Shen Y Z, Zhang Y X 2019 Nonlinear Dynamics 96 1405

    [7]

    Zhao Y F, Zhang Y X 2023 Chaos, Solitons & Fractals 171 113491

    [8]

    Nordmark A B 1991 Journal of Sound and Vibration 145 279

    [9]

    He D R, Habip S, Bauer M, Krueger U, Martienssen W, Christiansen B, Wang B H 1993 Acta Phys. Sin. 42 711. (in Chainese) [ 何大韧, Habip, S., Bauer, M., Krueger, U., Martienssen, W., Christiansen, B., 汪秉宏 1993 物理学报 42 711 ]

    [10]

    He D R, Wang B H, Bauer M, Habip S, Krueger U, Martienssen W, Christiansen B 1994 Physica D: Nonlinear Phenomena 79 335

    [11]

    Tse C K 1994 IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 41 16

    [12]

    Zou Y L, Luo X S, Chen G R 2006 Chinese Physics 15 1719

    [13]

    Avrutin V, Zhusubaliyev Z T 2020 International Journal of Bifurcation and Chaos 30 2030015

    [14]

    Cardin P T 2022 Chaos: An Interdisciplinary Journal of Nonlinear Science 32 013104

    [15]

    Wang D, Mo J, Zhao X Y, Gu H G, Qu S X, Ren W 2010 Chinese Physics Letters 27 070503

    [16]

    Gu H G 2013 Chaos: An Interdisciplinary Journal of Nonlinear Science 23 023126

    [17]

    Carvalho T, Cristiano R, Rodrigues D S, Tonon D J 2021 Nonlinear Dynamics 105 3763

    [18]

    Panchuk A, Sushko I, Westerhoff F 2018 Chaos: An Interdisciplinary Journal of Nonlinear Science 28 055908

    [19]

    Banerjee S, Grebogi C 1999 Physical Review E 59 4052

    [20]

    di Bernardo M, Hogan S J 2010 Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368 4915

    [21]

    Qu S X, Lu Y Z, Zhang L, He D R 2008 Chinese Physics B 17 4418

    [22]

    Simpson D J W 2016 Siam Review 58 177

    [23]

    Nusse H E, Yorke J A 1992 Physica D: Nonlinear Phenomena 57 39

    [24]

    Nusse H E, Ott E, Yorke J A 1994 Physical Review E 49 1073

    [25]

    Nusse H E, Yorke J A 1995 International journal of bifurcation and chaos 5 189

    [26]

    He D R, Bauer M, Habip S, Krueger U, Martienssen W, Christiansen B, Wang B H 1992 Physics Letters A 171 61

    [27]

    Qu S X, Christiansen B, He D R 1995 Acta Phys. Sin. 44 841. (in Chainese) [ 屈世显, Christiansen, B., 何大韧 1995 物理学报 44 841 ]

    [28]

    Qu S X, Wu S G, He D R 1998 Physical Review E 57 402

    [29]

    Wang W X, Ma M Q, Wu Y P, Zhu Y Z, He D R 2001 Acta Phys. Sin. 50 1226. (in Chainese) [王文秀, 马明全, 吴永萍, 竹有章, 何大韧 2001 物理学报 50 1226 ]

    [30]

    Dai j, Chu X S, He D R 2006 Acta Phys. Sin. 55 3979. (in Chainese) [ 戴俊, 褚翔升, 何大韧 2006 物 理学报 55 3979 ]

    [31]

    Elaskar S, del Rio E, Schulz W 2022 Symmetry 14 2519

    [32]

    Qu S X, Christiansen B, He D R 1995 Physics Letters A 201 413

    [33]

    Avrutin V, Panchuk A, Sushko I 2021 Proceedings of the Royal Society A 477 20210432

    [34]

    Jain P, Banerjee S 2003 International Journal of Bifurcation and Chaos 13 3341

    [35]

    Halse C, Homer M, di Bernardo M 2003 Chaos, Solitons & Fractals 18 953

    [36]

    Hogan S J, Higham L, Griffn T C L 2007 Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 463 49

    [37]

    Dutta P S, Banerjee S 2010 Discrete and Continuous Dynamical Systems-B 14 961

    [38]

    KOWALCZYK P, DI BERNARDO M, CHAMPNEYS A R, HOGAN S J, HOMER M, PIIROINEN P T, KUZNETSOV Y A, NORDMARK A 2006 International Journal of Bifurcation and Chaos 16 601

    [39]

    Avrutin V, Schanz M, Banerjee S 2007 Physical Review E 75 066205

    [40]

    Qin Z Y, Zhao Y J, Yang J C 2012 International Journal of Bifurcation and Chaos 22 1250112

    [41]

    Gardini L, Avrutin V, Sushko I 2014 International Journal of Bifurcation and Chaos 24 1450024

    [42]

    Wang Z, Zhang C, Bi Q 2024 Chaos, Solitons & Fractals 184 115040

    [43]

    Stiefenhofer P 2025 Physics Letters A 560 130935

    [44]

    Yamaguchi Y Y, Barré J 2023 Phys. Rev. E 107 054203

    [45]

    Liu X, Liu P, Liu Y 2022 AIMS Mathematics 7 3360

  • [1] 万兵兵, 胡伟波, 李晓虎, 黄文锋, 陈坚强, 涂国华. 高速钝锥对不同类型来流扰动的三维感受性. 物理学报, doi: 10.7498/aps.73.20241383
    [2] 胡悦, 曹凤朝, 董仁婧, 郝辰悦, 刘大禾, 石锦卫. 共焦腔稳定性突变的分析. 物理学报, doi: 10.7498/aps.69.20200814
    [3] 王日兴, 李雪, 李连, 肖运昌, 许思维. 三端磁隧道结的稳定性分析. 物理学报, doi: 10.7498/aps.68.20190927
    [4] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器. 物理学报, doi: 10.7498/aps.66.030502
    [5] 吴正人, 刘梅, 刘秋升, 宋朝匣, 王思思. 倾斜波动壁面上液膜表面波演化特性的影响. 物理学报, doi: 10.7498/aps.64.244701
    [6] 孙棣华, 康义容, 李华民. 驾驶员预估效应下车流能耗演化机理研究. 物理学报, doi: 10.7498/aps.64.154503
    [7] 史国栋, 张海明, 包伯成, 冯霏, 董伟. 脉冲序列控制双断续导电模式BIFRED变换器的动力学建模与多周期行为. 物理学报, doi: 10.7498/aps.64.010501
    [8] 王日兴, 贺鹏斌, 肖运昌, 李建英. 铁磁/重金属双层薄膜结构中磁性状态的稳定性分析. 物理学报, doi: 10.7498/aps.64.137201
    [9] 杨科利. 一类可变禁区的不连续系统的加周期分岔. 物理学报, doi: 10.7498/aps.64.120502
    [10] 钟曙, 沙金, 许建平, 许丽君, 周国华. 脉冲跨周期调制连续导电模式Buck变换器低频波动现象研究. 物理学报, doi: 10.7498/aps.63.198401
    [11] 杨平, 许建平, 何圣仲, 包伯成. 电流控制二次型Boost变换器的动力学研究. 物理学报, doi: 10.7498/aps.62.160501
    [12] 吴松荣, 何圣仲, 许建平, 周国华, 王金平. 电压型双频率控制开关变换器的动力学建模与多周期行为分析. 物理学报, doi: 10.7498/aps.62.218403
    [13] 包伯成, 杨平, 马正华, 张希. 电路参数宽范围变化时电流控制开关变换器的动力学研究. 物理学报, doi: 10.7498/aps.61.220502
    [14] 张立东, 贾磊, 朱文兴. 弯道交通流跟驰建模与稳定性分析. 物理学报, doi: 10.7498/aps.61.074501
    [15] 沙金, 包伯成, 许建平, 高玉. 脉冲序列控制电流断续模式Buck变换器的动力学建模与边界碰撞分岔. 物理学报, doi: 10.7498/aps.61.120501
    [16] 孙宁, 张化光, 王智良. 基于分数阶滑模面控制的分数阶超混沌系统的投影同步. 物理学报, doi: 10.7498/aps.60.050511
    [17] 杨谈, 金跃辉, 程时端. TCP-RED离散反馈系统中的边界碰撞分岔及混沌控制. 物理学报, doi: 10.7498/aps.58.5224
    [18] 魏高峰, 李开泰, 冯 伟, 高洪芬. 非协调数值流形方法的稳定性和收敛性分析. 物理学报, doi: 10.7498/aps.57.639
    [19] 王 涛, 高自友, 赵小梅. 多速度差模型及稳定性分析. 物理学报, doi: 10.7498/aps.55.634
    [20] 戴 栋, 马西奎, 李小峰. 一类具有两个边界的分段光滑系统中边界碰撞分岔现象及混沌. 物理学报, doi: 10.7498/aps.52.2729
计量
  • 文章访问数:  22
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-25
  • 修回日期:  2025-10-19
  • 上网日期:  2025-10-22

/

返回文章
返回