搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类分段光滑不连续映像中的边界碰撞分岔和余维分岔

邓浩洲 王力可 朱兆瑞 王恒通 屈世显

引用本文:
Citation:

一类分段光滑不连续映像中的边界碰撞分岔和余维分岔

邓浩洲, 王力可, 朱兆瑞, 王恒通, 屈世显
cstr: 32037.14.aps.75.20251167

Bonder collision bifurcations and co-dimensional bifurcations in a class of Piecewise-Smooth discontinuous mappings

DENG Haozhou, WANG Like, ZHU Zhaorui, WANG Hengtong, QU Shixian
cstr: 32037.14.aps.75.20251167
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 本文研究了一类分段光滑不连续一维映像的动力学, 该映像左支是一线性函数, 右支是指数为z的幂律函数. 在$x=0$处存在间断$[\mu,\mu+\delta]$, 其中μ为控制参数. 当周期轨道失稳时, 系统会进入混沌状态. 而不连续性的出现导致了边界碰撞分岔的发生, 可以使稳定的周期轨道转变为混沌状态或者另外一个稳定的周期状态. 在这类转变点的附近, 常常伴随着吸引子共存现象. 此外, 随控制参数减小出现周期递增现象. 得到了求解这类不连续映像在任意参数zδ下边界碰撞分岔临界控制参数的一般方法, 将其归结为求解无量纲控制参数($\mu/\mu_0$, 其中$\mu_0$为$\delta=0$时的控制参数)的代数方程, 该方程对于简单的有理数或者较小的整数z, 可以解析求解; 对于任意实数z, 可以数值求解. 据此, 解析得到了$L^{n-1}R$周期轨道的稳定性和边界碰撞分岔的临界控制参数. 基于稳定性和边界碰撞分岔的解析分析, 获得了双参数$\mu\text{-}\delta$平面中系统动力学的相平面, 讨论了系统的动力学行为, 发现了三类余维-2分岔点, 并给出了坐标通式. 同时, 在相平面中还发现了余维分岔点的融合, 构成一类特殊的三相点, 并解析得到其存在的条件.
    The study of chaos is an important field in science and has achieved many significant results. In the earlier days of the field, the study mainly focused on the systems that exhibit smooth behaviors throughout. Nonsmooth systems, by contrast, have received less attention. Nonsmooth dynamical systems are widely encountered in practical applications, such as impact oscillators, relaxation oscillators, switch circuits, neuron firing, epidemic models, and even economic models. They have become an active field of study in recent years. The typical characteristics of those systems are the abrupt variation of dynamics following a slow evolution over a longer period of time. Piecewise smooth maps are important models frequently used to describe the dynamics of those systems. Among them, much attention is paid to a class of generally one dimensional piecewise linear discontinuous mappings, as they are easy to handle and can display a rich variety of dynamical phenomena with new characteristics.Included in this work is a discontinuous two-piece mapping function. The left branch is a linear function with slope α, and the right branch is a power law function with exponent z. There exists a gap limited by $[\mu,\mu+\delta]$ at $x=0$, where μ is the control parameter and δ is the width of the gap. Even though the dynamics of nonsmooth and continuous mapping have been extensively studied at some special z values, their discontinuous counterparts have not been investigated at any z and discontinuous gap δ. The presence of a discontinuity may induce border collision bifurcations. The interplay between these bifurcations associated with stability analysis and the border collision bifurcations may produce complex dynamics with new characteristics. Therefore, this work investigates the dynamics of those mappings in which periodic increments, periodic adding and coexistence of attractors are observed. The border collision bifurcation often disrupts a stable periodic orbit, causing it transition into either a chaotic state or a different periodic orbit. Near the critical parameters of this bifurcation, a periodic orbit often coexists with a chaotic or another periodic attractor. A general approach is proposed to analytically and numerically calculate the critical control parameters at which the border collision bifurcations happen, which transform the problem into the solution of an algebraic equation of dimensionless control parameter μ/μ0, where μ0 is the critical control parameter when δ = 0. The solution can be obtained analytically when z is a simple rational number or small integer, and numerically for an arbitrary real number. In this way, the stability condition and critical control parameters for the periodic orbit of type $L^{n-1}R $ are analytically or numerically obtained under the arbitrary exponent z and discontinuous gap δ. The results are in accordance with the numerical simulations very well. Based on the stability and border collision bifurcation analysis, the phase diagrams in the plane of two dimensional parameters μδ are built for different ranges of z. Their dynamical behaviors are discussed, and three types of co-dimension-2 bifurcations are observed, and the general expressions for the coordinates at which those phenomena occur are obtained in the phase plane. Meanwhile, a specular tripe-point induced by merging of co-dimension-2 bifurcation points BC-flip and BC-BC is observed in the phase plane, and the condition for its existence is analytical obtained.
      通信作者: 屈世显, sxqu@snnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11975144)资助的课题.
      Corresponding author: QU Shixian, sxqu@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11975144).
    [1]

    Makarenkov O, Lamb J S W 2012 Physica D: Nonlinear Phenomena 241 1826Google Scholar

    [2]

    Qin Z Y, Yang J C, Banerjee S, Jiang G R 2011 Discrete and Continuous Dynamical Systems-B 16 547Google Scholar

    [3]

    Biswas D, Seth S, Bor M 2020 Int. J. Bifurcation Chaos 30 2050018Google Scholar

    [4]

    Metri R A, Mounica M, Rajpathak B A 2020 IEEE First International Conference on Smart Technologies for Power, Energy and Control (STPEC) Nagpur, India, 2020 pp1–6

    [5]

    Metri R, Rajpathak B, Pillai H 2023 Nonlinear Dyn. 111 9395Google Scholar

    [6]

    Shen Y Z, Zhang Y X 2019 Nonlinear Dyn. 96 1405

    [7]

    Zhao Y F, Zhang Y X 2023 Chaos, Solitons & Fractals 171 113491

    [8]

    Nordmark A B 1991 J. Sound Vib. 145 279Google Scholar

    [9]

    何大韧, Habip S, Bauer M, Krueger U, Martienssen W, Christiansen B, 汪秉宏 1993 物理学报 42 711Google Scholar

    He D R, Habip S, Bauer M, Krueger U, Martienssen W, Christiansen B, Wang B H 1993 Acta Phys. Sin. 42 711Google Scholar

    [10]

    He D R, Wang B H, Bauer M, Habip S, Krueger U, Martienssen W, Christiansen B 1994 Physica D: Nonlinear Phenomena 79 335Google Scholar

    [11]

    Tse C K 1994 IEEE Trans. Circuits Syst. I: Fundamental Theory and Applications 41 16

    [12]

    Zou Y L, Luo X S, Chen G R 2006 Chin. Phys. 15 1719Google Scholar

    [13]

    Avrutin V, Zhusubaliyev Z T 2020 Int. J. Bifurcation Chaos 30 2030015Google Scholar

    [14]

    Cardin P T 2022 Chaos: An Interdisciplinary Journal of Nonlinear Science 32 013104Google Scholar

    [15]

    Wang D, Mo J, Zhao X Y, Gu H G, Qu S X, Ren W 2010 Chin. Phys. Lett. 27 070503Google Scholar

    [16]

    Gu H G 2013 Chaos: An Interdisciplinary Journal of Nonlinear Science 23 023126Google Scholar

    [17]

    Carvalho T, Cristiano R, Rodrigues D S, Tonon D J 2021 Nonlinear Dyn. 105 3763Google Scholar

    [18]

    Panchuk A, Sushko I, Westerhoff F 2018 Chaos: An Interdisciplinary Journal of Nonlinear Science 28 055908Google Scholar

    [19]

    Banerjee S, Grebogi C 1999 Phys. Rev. E 59 4052

    [20]

    di Bernardo M, Hogan S J 2010 Philos. Trans. A: Math. Phys. Eng. Sci. 368 4915Google Scholar

    [21]

    Qu S X, Lu Y Z, Zhang L, He D R 2008 Chin. Phy. B 17 4418Google Scholar

    [22]

    Simpson D J W 2016 Siam Review 58 177Google Scholar

    [23]

    Nusse H E, Yorke J A 1992 Physica D: Nonlinear Phenomena 57 39Google Scholar

    [24]

    Nusse H E, Ott E, Yorke J A 1994 Phys. Rev. E 49 1073

    [25]

    Nusse H E, Yorke J A 1995 Int. J. Bifurcation Chaos 5 189Google Scholar

    [26]

    He D R, Bauer M, Habip S, Krueger U, Martienssen W, Christiansen B, Wang B H 1992 Phys. Lett. A 171 61Google Scholar

    [27]

    屈世显, Christiansen B, 何大韧 1995 物理学报 44 841Google Scholar

    Qu S X, Christiansen B, He D R 1995 Acta Phys. Sin. 44 841Google Scholar

    [28]

    Qu S X, Wu S G, He D R 1998 Phys. Rev. E 57 402Google Scholar

    [29]

    王文秀, 马明全, 吴永萍, 竹有章, 何大韧 2001 物理学报 50 1226Google Scholar

    Wang W X, Ma M Q, Wu Y P, Zhu Y Z, He D R 2001 Acta Phys. Sin. 50 1226Google Scholar

    [30]

    戴俊, 褚翔升, 何大韧 2006 物理学报 55 3979Google Scholar

    Dai J, Chu X S, He D R 2006 Acta Phys. Sin. 55 3979Google Scholar

    [31]

    Elaskar S, del Rio E, Schulz W 2022 Symmetry 14 2519Google Scholar

    [32]

    Qu S X, Christiansen B, He D R 1995 Phys. Lett. A 201 413Google Scholar

    [33]

    Avrutin V, Panchuk A, Sushko I 2021 Proc. A 477 20210432Google Scholar

    [34]

    Jain P, Banerjee S 2003 Int. J. Bifurcation Chaos 13 3341Google Scholar

    [35]

    Halse C, Homer M, di Bernardo M 2003 Chaos, Solitons & Fractals 18 953

    [36]

    Hogan S J, Higham L, Griffn T C L 2007 Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 463 49Google Scholar

    [37]

    Dutta P S, Banerjee S 2010 Discrete and Continuous Dynamical Systems-B 14 961Google Scholar

    [38]

    Kowalczyk P, Di Bernardo M, Champneys A R, Hogan S J, Homer M, Piiroinen P T, Kuznetsov Y A, Nordmark A 2006 Int. J. Bifurcation Chaos 16 601Google Scholar

    [39]

    Avrutin V, Schanz M, Banerjee S 2007 Phys. Rev. E 75 066205Google Scholar

    [40]

    Qin Z Y, Zhao Y J, Yang J C 2012 Int. J. Bifurcation Chaos 22 1250112Google Scholar

    [41]

    Gardini L, Avrutin V, Sushko I 2014 Int. J. Bifurcation Chaos24 1450024Google Scholar

    [42]

    Wang Z, Zhang C, Bi Q 2024 Chaos, Solitons & Fractals 184 115040

    [43]

    Stiefenhofer P 2025 Phys. Lett. A 560 130935Google Scholar

    [44]

    Yamaguchi Y Y, Barré J 2023 Phys. Rev. E 107 054203

    [45]

    Liu X, Liu P, Liu Y 2022 AIMS Mathematics 7 3360Google Scholar

  • 图 1  轨道碰撞到$ x=0^{-} $ (a)和$ x=0^{+} $ (b)时的边界碰撞分岔示意图

    Fig. 1.  Illustration of the border collision bifurcation occurs at $ x=0^{-} $ (a) and $ x=0^{+} $ (b), respectively.

    图 2  $ \mu\text{-}\delta $相平面中$ L^{n-1}R $周期轨道的分岔临界线 (a) 临界线 $ n=2 $, $\alpha=0.6 $; (b) 临界线$ n=3,\ \alpha=0.618 $

    Fig. 2.  Critical curves for bifurcations of $ L^{n-1}R $ periodic orbits in $ \mu\text{-}\delta $: (a) Critical curves $ n=2 $, $\alpha=0.6$; (b) critical curves $n=3 $, $\alpha=0.618 $

    图 3  $ z=1/2 $, $ \alpha=0.6 $, $ \beta=-3 $时, $ \mu\text{-}\delta $相平面上$ L^{n-1}R $周期轨道分岔临界线和分岔图 (a) $ \mu\text{-}\delta $相平面上分岔临界线, $ L^{n-1}R^{ } $稳定周期轨道存在区域. (b)—(d) 不同δ取值时的分岔图. 绿色水平虚线标识不连续边界, 蓝色和红色和粉红色竖直虚线分别标识flip分岔和$ \rm BC^- $边界碰撞分岔临界控制参数的解析值$ \mu_{n, {\rm{flip}}} $和$ \mu_{n, {\rm{BC}}^{-}} $

    Fig. 3.  Critical bifurcation curve of period $ L^{n-1}R $ and bifurcation diagrams when $ z=1/2 $, $ \alpha=0.6 $ and $ \beta=-3 $: (a) Critical bifurcation curve in the $ \mu\text{-}\delta $ plane. The regions where the stable $ ^{ }L^{n-1}R $ orbits exit. (b)–(d) Bifurcation diagrams for different δ. The green dashed horizontal lines mark the discontinuous border of the map. The vertical dashed-lines of blue and red colors indicate the analytical values $ \mu_{n, {\rm{flip}}} $ and $ \mu_{n, {\rm{BC}}^{-}} $ of the critical control parameters for the flip and $ \rm BC^- $ border collision bifurcations, respectively.

    图 4  $ \mu\text{-}\delta $相平面中$ L^{n-1}R $周期轨道的分岔临界线($ z=1.5 $, $ \alpha=0.6 $, $ \beta=-3 $) (a) 临界线$ n=2 $; (b) $ L^{n-1}R $周期轨道稳定存在区域

    Fig. 4.  Critical curves for bifurcations of $ L^{n-1}R $ periodic orbits in $ \mu\text{-}\delta $ phase plain when $ z=1.5 $, $ \alpha=0.6 $ and $ \beta=-3 $: (a) Critical curves $ n=2 $; (b) the regions where the stable $ L^{n-1}R $ orbits exit.

    图 5  $ z=1.5 $, $ \alpha=0.6 $, $ \beta=-3 $, δ取值不同时的分岔图. 绿色水平虚线标识不连续边界, 蓝色、红色和粉红色竖直虚线分别标识flip分岔、BC和BC+边界碰撞分岔临界控制参数的解析值$ \mu_{n, {\rm{flip}}} $, $ \mu_{n, {\rm{BC}}^{-}} $和$ \mu_{n, {\rm{BC}}^{+}} $

    Fig. 5.  Bifurcation diagrams for different δ when $ z=1.5 $, $ \alpha=0.6 $ and $ \beta=-3 $. The green dashed horizontal lines mark the discontinuous border of the map. The vertical dashed-lines of blue, red and magenta colors indicate the analytical values $ \mu_{n, {\rm{flip}}} $, $ \mu_{n, {\rm{BC}}^{-}} $ and $ \mu_{n, {\rm{BC}}^{+}} $ of the critical control parameters for the flip, BC and BC+ border collision bifurcations, respectively.

    图 6  $ \mu\text{-}\delta $相平面中$ L^{n-1}R $周期的分岔曲线, 其中, $ z=-0.6 $, $ \alpha=0.6 $, $ \beta=-3 $. 彩色区域为周期轨道稳定区域, 其蓝色左边界为fold分岔的临界线$ \mu_{n, {\rm{fold}}} $, 其红色右边界为碰撞分岔临界线$ \mu_{n, {\rm{BC}}^{-}} $, 区间外为禁止区域

    Fig. 6.  Critical bifurcation curves in phase space $ \mu\text{-}\delta $, where $ z=-0.6, \;\alpha=0.6 $ and $ \beta=-3 $. The stable $ L^{n-1}R $ periodic orbits are permitted in the colored areas, in which the blue-lines and the red-lines mark the critical curves $ \mu_{n, {\rm{fold}}} $ and $ \mu_{n, {\rm{BC}}^{-}} $ of the fold and border collision bifurcations, respectively. Those orbits are prohibited out of the colored regions.

    表 1  $ z=1/2 $, $ \alpha=0.6 $和$ \beta=-3 $时, 三种分岔的临界控制参数

    Table 1.  Critical control parameters for three kinds of bifurcations when $ z=1/2 $, $ \alpha=0.6 $ and $ \beta=-3 $.

    δ n $ \mu_{n, \rm BC^+} $ $ \mu^\prime_{n, \rm BC^–} $ $ \mu_{n, \rm BC^–} $ $ \mu_{n, \rm flip} $
    214.75000
    221.000004.00000
    0.400516.3495
    0.400520.019618.179391.36856
    0.400530.023960.941290.37277
    0.400540.051570.10493
    –313.000009.75000
    –321.1250014.37392.64375
    –330.5510203.108470.997347
    –340.2977941.139120.442522
    –350.1686330.5105830.217806
    –360.09787860.2535450.115003
    下载: 导出CSV

    表 2  $ z=3/2 $, $ \alpha=0.6 $和$ \beta=-3 $时, 三种分岔的临界控制参数

    Table 2.  Critical control parameters for three kinds of bifurcations when $ z=3/2 $, $ \alpha=0.6 $ and $ \beta=-3 $.

    δ n $ \mu_{n, \rm BC^+} $ $ \mu^\prime_{n, \rm BC^-} $ $ \mu_{n, \rm BC^-} $ $ \mu_{n, \rm flip} $
    0.002 1 0.08031
    0.002 2 0.11501 0.14214
    –0.01 1 0.01 0.0923
    –0.01 2 0.00375 0.01617 0.08705 0.14664
    –0.01 3 0.00184 0.00404
    –0.01 4 0.000993 0.001882
    –0.01 ··· ··· ··· ··· ···
    –0.312 1 0.312 0.39431
    –0.312 2 0.117 0.25989
    –0.312 3 0.05731 0.34237 0.36 0.38132
    –0.312 4 0.03097 0.06682
    –0.312 5 0.01754 0.03273
    –0.312 ··· ··· ··· ··· ···
    –10.5 3 1.92857 2.25258
    –10.5 4 1.04228 1.85297
    –10.5 5 0.59022 1.70563
    –10.5 6 0.34258 0.68604
    –10.5 7 0.2016 0.36408
    –10.5 ··· ··· ··· ··· ···
    下载: 导出CSV
  • [1]

    Makarenkov O, Lamb J S W 2012 Physica D: Nonlinear Phenomena 241 1826Google Scholar

    [2]

    Qin Z Y, Yang J C, Banerjee S, Jiang G R 2011 Discrete and Continuous Dynamical Systems-B 16 547Google Scholar

    [3]

    Biswas D, Seth S, Bor M 2020 Int. J. Bifurcation Chaos 30 2050018Google Scholar

    [4]

    Metri R A, Mounica M, Rajpathak B A 2020 IEEE First International Conference on Smart Technologies for Power, Energy and Control (STPEC) Nagpur, India, 2020 pp1–6

    [5]

    Metri R, Rajpathak B, Pillai H 2023 Nonlinear Dyn. 111 9395Google Scholar

    [6]

    Shen Y Z, Zhang Y X 2019 Nonlinear Dyn. 96 1405

    [7]

    Zhao Y F, Zhang Y X 2023 Chaos, Solitons & Fractals 171 113491

    [8]

    Nordmark A B 1991 J. Sound Vib. 145 279Google Scholar

    [9]

    何大韧, Habip S, Bauer M, Krueger U, Martienssen W, Christiansen B, 汪秉宏 1993 物理学报 42 711Google Scholar

    He D R, Habip S, Bauer M, Krueger U, Martienssen W, Christiansen B, Wang B H 1993 Acta Phys. Sin. 42 711Google Scholar

    [10]

    He D R, Wang B H, Bauer M, Habip S, Krueger U, Martienssen W, Christiansen B 1994 Physica D: Nonlinear Phenomena 79 335Google Scholar

    [11]

    Tse C K 1994 IEEE Trans. Circuits Syst. I: Fundamental Theory and Applications 41 16

    [12]

    Zou Y L, Luo X S, Chen G R 2006 Chin. Phys. 15 1719Google Scholar

    [13]

    Avrutin V, Zhusubaliyev Z T 2020 Int. J. Bifurcation Chaos 30 2030015Google Scholar

    [14]

    Cardin P T 2022 Chaos: An Interdisciplinary Journal of Nonlinear Science 32 013104Google Scholar

    [15]

    Wang D, Mo J, Zhao X Y, Gu H G, Qu S X, Ren W 2010 Chin. Phys. Lett. 27 070503Google Scholar

    [16]

    Gu H G 2013 Chaos: An Interdisciplinary Journal of Nonlinear Science 23 023126Google Scholar

    [17]

    Carvalho T, Cristiano R, Rodrigues D S, Tonon D J 2021 Nonlinear Dyn. 105 3763Google Scholar

    [18]

    Panchuk A, Sushko I, Westerhoff F 2018 Chaos: An Interdisciplinary Journal of Nonlinear Science 28 055908Google Scholar

    [19]

    Banerjee S, Grebogi C 1999 Phys. Rev. E 59 4052

    [20]

    di Bernardo M, Hogan S J 2010 Philos. Trans. A: Math. Phys. Eng. Sci. 368 4915Google Scholar

    [21]

    Qu S X, Lu Y Z, Zhang L, He D R 2008 Chin. Phy. B 17 4418Google Scholar

    [22]

    Simpson D J W 2016 Siam Review 58 177Google Scholar

    [23]

    Nusse H E, Yorke J A 1992 Physica D: Nonlinear Phenomena 57 39Google Scholar

    [24]

    Nusse H E, Ott E, Yorke J A 1994 Phys. Rev. E 49 1073

    [25]

    Nusse H E, Yorke J A 1995 Int. J. Bifurcation Chaos 5 189Google Scholar

    [26]

    He D R, Bauer M, Habip S, Krueger U, Martienssen W, Christiansen B, Wang B H 1992 Phys. Lett. A 171 61Google Scholar

    [27]

    屈世显, Christiansen B, 何大韧 1995 物理学报 44 841Google Scholar

    Qu S X, Christiansen B, He D R 1995 Acta Phys. Sin. 44 841Google Scholar

    [28]

    Qu S X, Wu S G, He D R 1998 Phys. Rev. E 57 402Google Scholar

    [29]

    王文秀, 马明全, 吴永萍, 竹有章, 何大韧 2001 物理学报 50 1226Google Scholar

    Wang W X, Ma M Q, Wu Y P, Zhu Y Z, He D R 2001 Acta Phys. Sin. 50 1226Google Scholar

    [30]

    戴俊, 褚翔升, 何大韧 2006 物理学报 55 3979Google Scholar

    Dai J, Chu X S, He D R 2006 Acta Phys. Sin. 55 3979Google Scholar

    [31]

    Elaskar S, del Rio E, Schulz W 2022 Symmetry 14 2519Google Scholar

    [32]

    Qu S X, Christiansen B, He D R 1995 Phys. Lett. A 201 413Google Scholar

    [33]

    Avrutin V, Panchuk A, Sushko I 2021 Proc. A 477 20210432Google Scholar

    [34]

    Jain P, Banerjee S 2003 Int. J. Bifurcation Chaos 13 3341Google Scholar

    [35]

    Halse C, Homer M, di Bernardo M 2003 Chaos, Solitons & Fractals 18 953

    [36]

    Hogan S J, Higham L, Griffn T C L 2007 Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 463 49Google Scholar

    [37]

    Dutta P S, Banerjee S 2010 Discrete and Continuous Dynamical Systems-B 14 961Google Scholar

    [38]

    Kowalczyk P, Di Bernardo M, Champneys A R, Hogan S J, Homer M, Piiroinen P T, Kuznetsov Y A, Nordmark A 2006 Int. J. Bifurcation Chaos 16 601Google Scholar

    [39]

    Avrutin V, Schanz M, Banerjee S 2007 Phys. Rev. E 75 066205Google Scholar

    [40]

    Qin Z Y, Zhao Y J, Yang J C 2012 Int. J. Bifurcation Chaos 22 1250112Google Scholar

    [41]

    Gardini L, Avrutin V, Sushko I 2014 Int. J. Bifurcation Chaos24 1450024Google Scholar

    [42]

    Wang Z, Zhang C, Bi Q 2024 Chaos, Solitons & Fractals 184 115040

    [43]

    Stiefenhofer P 2025 Phys. Lett. A 560 130935Google Scholar

    [44]

    Yamaguchi Y Y, Barré J 2023 Phys. Rev. E 107 054203

    [45]

    Liu X, Liu P, Liu Y 2022 AIMS Mathematics 7 3360Google Scholar

  • [1] 郭群, 徐莹. 无电容器嵌入的忆阻神经元电路的动力学与能耗分析. 物理学报, 2026, 75(1): 010001. doi: 10.7498/aps.75.20251114
    [2] 万兵兵, 胡伟波, 李晓虎, 黄文锋, 陈坚强, 涂国华. 高速钝锥对不同类型来流扰动的三维感受性. 物理学报, 2024, 73(23): 234701. doi: 10.7498/aps.73.20241383
    [3] 胡悦, 曹凤朝, 董仁婧, 郝辰悦, 刘大禾, 石锦卫. 共焦腔稳定性突变的分析. 物理学报, 2020, 69(22): 224202. doi: 10.7498/aps.69.20200814
    [4] 王日兴, 李雪, 李连, 肖运昌, 许思维. 三端磁隧道结的稳定性分析. 物理学报, 2019, 68(20): 207201. doi: 10.7498/aps.68.20190927
    [5] 孙棣华, 康义容, 李华民. 驾驶员预估效应下车流能耗演化机理研究. 物理学报, 2015, 64(15): 154503. doi: 10.7498/aps.64.154503
    [6] 史国栋, 张海明, 包伯成, 冯霏, 董伟. 脉冲序列控制双断续导电模式BIFRED变换器的动力学建模与多周期行为. 物理学报, 2015, 64(1): 010501. doi: 10.7498/aps.64.010501
    [7] 王日兴, 贺鹏斌, 肖运昌, 李建英. 铁磁/重金属双层薄膜结构中磁性状态的稳定性分析. 物理学报, 2015, 64(13): 137201. doi: 10.7498/aps.64.137201
    [8] 杨科利. 一类可变禁区的不连续系统的加周期分岔. 物理学报, 2015, 64(12): 120502. doi: 10.7498/aps.64.120502
    [9] 钟曙, 沙金, 许建平, 许丽君, 周国华. 脉冲跨周期调制连续导电模式Buck变换器低频波动现象研究. 物理学报, 2014, 63(19): 198401. doi: 10.7498/aps.63.198401
    [10] 杨平, 许建平, 何圣仲, 包伯成. 电流控制二次型Boost变换器的动力学研究. 物理学报, 2013, 62(16): 160501. doi: 10.7498/aps.62.160501
    [11] 吴松荣, 何圣仲, 许建平, 周国华, 王金平. 电压型双频率控制开关变换器的动力学建模与多周期行为分析. 物理学报, 2013, 62(21): 218403. doi: 10.7498/aps.62.218403
    [12] 包伯成, 杨平, 马正华, 张希. 电路参数宽范围变化时电流控制开关变换器的动力学研究. 物理学报, 2012, 61(22): 220502. doi: 10.7498/aps.61.220502
    [13] 张立东, 贾磊, 朱文兴. 弯道交通流跟驰建模与稳定性分析. 物理学报, 2012, 61(7): 074501. doi: 10.7498/aps.61.074501
    [14] 谭红芳, 金涛, 屈世显. 一个全局耦合不连续映像格子中的冻结化随机图案模式. 物理学报, 2012, 61(4): 040507. doi: 10.7498/aps.61.040507
    [15] 沙金, 包伯成, 许建平, 高玉. 脉冲序列控制电流断续模式Buck变换器的动力学建模与边界碰撞分岔. 物理学报, 2012, 61(12): 120501. doi: 10.7498/aps.61.120501
    [16] 孙宁, 张化光, 王智良. 基于分数阶滑模面控制的分数阶超混沌系统的投影同步. 物理学报, 2011, 60(5): 050511. doi: 10.7498/aps.60.050511
    [17] 杨谈, 金跃辉, 程时端. TCP-RED离散反馈系统中的边界碰撞分岔及混沌控制. 物理学报, 2009, 58(8): 5224-5237. doi: 10.7498/aps.58.5224
    [18] 魏高峰, 李开泰, 冯 伟, 高洪芬. 非协调数值流形方法的稳定性和收敛性分析. 物理学报, 2008, 57(2): 639-647. doi: 10.7498/aps.57.639
    [19] 王 涛, 高自友, 赵小梅. 多速度差模型及稳定性分析. 物理学报, 2006, 55(2): 634-640. doi: 10.7498/aps.55.634
    [20] 戴 栋, 马西奎, 李小峰. 一类具有两个边界的分段光滑系统中边界碰撞分岔现象及混沌. 物理学报, 2003, 52(11): 2729-2736. doi: 10.7498/aps.52.2729
计量
  • 文章访问数:  671
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-25
  • 修回日期:  2025-10-19
  • 上网日期:  2025-10-22
  • 刊出日期:  2026-01-05

/

返回文章
返回