搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维单层FeGa2S4电子结构及光学性质调控研究

宋蕊 程润 冯凯 姚佳 王必利 鲁梦洁 安明

引用本文:
Citation:

二维单层FeGa2S4电子结构及光学性质调控研究

宋蕊, 程润, 冯凯, 姚佳, 王必利, 鲁梦洁, 安明

Tuning Electronic Structure and Optical Properties of FeGa2S4 Monolayer by Strain

SONG Rui, CHENG Run, FENG Kai, WANG Bili, YAO Jia, LU Mengjie, AN Ming
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 针对高速电子器件与光电器件的发展需求,探索并设计具有优异载流子输运特性的二维半导体材料已成为该领域的核心科学问题。本文基于密度泛函理论,采用第一性原理计算系统地探究了面内应力对单层FeGa2S4材料输运性质及光学性质的调控规律。结果表明,FeGa2S4易于剥离,其单层结构具有较好的动力学、热力学稳定性和面内各向同性的机械性能,较低的杨氏模量使其在外部应力下易于形变。与母相块材相似,单层FeGa2S4也是一种间接带隙半导体(能隙为1.65 eV),在单轴应力(应变范围±5%)调控下,空穴迁移率基本保持不变(∼103 cm2·V-1·s-1),电子迁移率(+5%应变)则提升超过一个数量级。双轴拉伸应力则能够有效提升材料在可见光范围内的光捕获能力。研究结果表明单层FeGa2S4在高速电子和柔性光电器件领域具有较大的应用前景。
    This study aims to explore two-dimensional semiconductor materials with superior carrier transport properties to address the growing demands of high-speed electronics and optoelectronic devices. The focus lies on evaluating the feasibility of monolayer FeGa2S4 as a candidate material through systematic theoretical investigations. First-principles calculations were employed to analyze the exfoliation energy of FeGa2S4 bulk crystal and the structural stability, mechanical properties, and strain-dependent optoelectronic behavior of its monolayer counterpart. Strain engineering strategies, including uniaxial and biaxial strain, were applied to assess carrier mobility modulation and spectral response. Our calculation results indicate that monolayer FeGa2S4 is an indirect bandgap semiconductor (Eg =1.65 eV) with low stiffness (Young's modulus up to 151.6 GPa) and high flexibility (Poisson's ratio less than 0.25), demonstrating exceptional thermodynamic stability. Under +5% uniaxial tensile strain, its electron mobility along x/y directions dramatically increases to 5402.4/4164.0 cm2·V-1·s-1, fivefold higher than its hole mobility. Biaxial strain outperforms uniaxial strain in bandgap modulation and induces systematic redshift in optical spectra, significantly enhancing visible-light harvesting efficiency. This work reveals that monolayer FeGa2S4 is a promising highmobility photoactive material for next-generation solar cells and optoelectronics. The strain-mediated control of electronic and optical properties provides a theoretical framework for optimizing 2D semiconductors, offering critical guidance for experimental synthesis and device engineering. These findings highlight the material's potential for advancing energy conversion technologies and photonic applications.
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306666

    [2]

    Banszerus L, Schmitz M, Engels S, Dauber J, Oellers M, Haupt F, Watanabe K, Taniguchi T, Beschoten B, Stampfer C 2015 Sci. Adv. 1 e1500222

    [3]

    Lee C, Wei X D, Kysar J W, Hone J 2008 Science 321385

    [4]

    Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8902

    [5]

    Berger C, Song Z M, Li T B, Li X B, Ogbazghi A Y, Feng R, Dai Z T, Marchenkov A N, Conrad E H, First P N, de Heer W A 2004 J. Phys. Chem. B 10819912

    [6]

    Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 47464

    [7]

    Withers F, Dubois M, Savchenko A K 2010 Phys. Rev. B 82073403

    [8]

    Liu B, Zhou K 2019 Prog. Mater. Sci. 10099

    [9]

    Cai Y Q; Zhang G, Zhang Y W 2014 Sci. Rep. 46677

    [10]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5722

    [11]

    Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zólyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patanè A, Eaves L, Grigorieva I V, Fal’ko V I, Geim A K, Cao Y 2017 Nat. Nanotechnol. 12223

    [12]

    Hu P A, Wang L F, Yoon M, Zhang J, Feng W, Wang X N, Wen Z Z, Idrobo J C, Miyamoto Y, Geohegan D B, Xiao K 2013 Nano Lett. 131649

    [13]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K Ping, Zhang H 2013 Nat. Chem. 5263

    [14]

    Ataca C, Sahin H, Ciraci S 2012 J. Phys. Chem. C 1168983

    [15]

    Song Y, Pan J B, Zhang Y F, Yang H T, Du S X 2021 J. Phys. Chem. Lett. 126007

    [16]

    Zhang S L, Xie M Q, Li F Y, Yan Z, Li Y F, Kan E, Liu W, Chen Z F, Zeng H B 2016 Angew. Chem. Int. Ed. 551666

    [17]

    Guo Z L, Zhou J, Zhua L G, Sun Z M 2016 J. Mater. Chem. A 411446

    [18]

    Song R, Feng K, Wang B L, Wang L, Liang D D 2022 Acta Phys. Sin. 71037101(in Chinese)[宋蕊, 冯凯, 王必利, 王黎, 梁丹丹2022物理学报71037101]

    [19]

    Du Z G, Yang S B, Li S M, Lou J, Zhang S Q, Wang S, Li B, Gong Y J, Song L, Zou X L, Ajayan P M 2020 Nature 577492

    [20]

    Kim Y, Woo W J, Kim D, Lee S, Chung S M, Park J, Kim H 2021 Adv. Mater. 332005907

    [21]

    Rong C, Su T, Li Z K, Chu T S, Zhu M L, Yan Y B, Zhang B W, Xuan F Z 2024 Nat. Commun. 151566

    [22]

    Victorin J, Razpopov A, Higo T, Dziobek-Garrett R, Kempa T J, Nakatsuji S, Valentí R, Drichko N 2024 Sci. Rep.1428040

    [23]

    Dogguy-Smiri L, Dung N H, Pardo M P 1980 Mat. Res. Bull. 15861

    [24]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 5411169

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 773865

    [26]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 135188

    [27]

    Gonze X, Lee C 1997 Phys. Rev. B 5510355

    [28]

    Sharan A, Sajjad M, Singh D J, Singh N 2022 Phys. Rev. Mater. 6094005

    [29]

    Grimme S 2006 J. Comput. Chem. 271787

    [30]

    Gonze X, Lee C 1997 Phys. Rev. B 5510355

    [31]

    Togo A, Tanaka I 2015 Scr. Mater. 1081

    [32]

    Myoung B R, Kim S J, Kim C S 2008 J Korean Phys. Soc. 53750

    [33]

    Zacharia R, Ulbricht H, Hertel T 2004 Phys. Rev. B 69155406

    [34]

    Pavone P, Karch K, Schiitt O, Strauch D, Windl W, Giannozzi P, Baroni S 1993 Phys. Rev. B 483156

    [35]

    Mouhat F, Coudert F X 2014 Phys. Rev. B 90224104

    [36]

    Cadelano E, Palla P L, Giordano S, Colombo L 2010 Phys. Rev. B 82235414

    [37]

    Huang Z, Lu N, Wang Z F, Xu S H, Guan J, Hu Y W 2022 Nano Lett. 227734

    [38]

    Bardeen J, Shockley W 1950 Phys. Rev. 8072

    [39]

    Xia F N, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8899

  • [1] 宋蕊, 王必利, 冯凯, 姚佳, 李霞. 应力调控对单层TiOCl2电子结构及光学性质的影响. 物理学报, doi: 10.7498/aps.71.20212023
    [2] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20210271
    [3] 熊子谦, 张鹏程, 康文斌, 方文玉. 一种新型二维TiO2的电子结构与光催化性质(已撤稿. 物理学报, doi: 10.7498/aps.69.20200631
    [4] 潘凤春, 林雪玲, 曹志杰, 李小伏. Fe, Co, Ni掺杂GaSb的电子结构和光学性质. 物理学报, doi: 10.7498/aps.68.20190290
    [5] 王闯, 赵永红, 刘永. Ga1–xCrxSb (x = 0.25, 0.50, 0.75) 磁学和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20182305
    [6] 赵佰强, 张耘, 邱晓燕, 王学维. Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.65.014212
    [7] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.64.147102
    [8] 何静芳, 郑树凯, 周鹏力, 史茹倩, 闫小兵. Cu-Co共掺杂ZnO光电性质的第一性原理计算. 物理学报, doi: 10.7498/aps.63.046301
    [9] 谢知, 程文旦. TiO2纳米管电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.63.243102
    [10] 程旭东, 吴海信, 唐小路, 王振友, 肖瑞春, 黄昌保, 倪友保. Na2Ge2Se5电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.63.184208
    [11] 程和平, 但加坤, 黄智蒙, 彭辉, 陈光华. 黑索金电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.62.163102
    [12] 潘磊, 卢铁城, 苏锐, 王跃忠, 齐建起, 付佳, 张燚, 贺端威. -AlON晶体电子结构和光学性质研究. 物理学报, doi: 10.7498/aps.61.027101
    [13] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.61.193102
    [14] 杨春燕, 张蓉, 张利民, 可祥伟. 0.5NdAlO3-0.5CaTiO3电子结构及光学性质的第一性原理计算. 物理学报, doi: 10.7498/aps.61.077702
    [15] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.61.107102
    [16] 崔冬萌, 谢泉, 陈茜, 赵凤娟, 李旭珍. Si基外延Ru2Si3电子结构及光学性质研究. 物理学报, doi: 10.7498/aps.59.2027
    [17] 李旭珍, 谢泉, 陈茜, 赵凤娟, 崔冬萌. OsSi2电子结构和光学性质的研究. 物理学报, doi: 10.7498/aps.59.2016
    [18] 邢海英, 范广涵, 赵德刚, 何 苗, 章 勇, 周天明. Mn掺杂GaN电子结构和光学性质研究. 物理学报, doi: 10.7498/aps.57.6513
    [19] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.57.7800
    [20] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.56.5359
计量
  • 文章访问数:  16
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-14

/

返回文章
返回