搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于忆阻器的新型混沌系统的动力学、周期轨道及其在图像加密中的应用

徐一丹 董成伟

引用本文:
Citation:

基于忆阻器的新型混沌系统的动力学、周期轨道及其在图像加密中的应用

徐一丹, 董成伟

Dynamics, periodic orbit, and image encryption of a new four-order memristor chaotic system

XU Yidan, DONG Chengwei
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 由于忆阻器具有独特的非线性特性和记忆效应, 基于忆阻器的混沌系统成为目前研究的热点. 然而, 关于忆阻混沌系统不稳定周期轨道的研究目前较少. 本文通过引入三角函数忆阻器改进三维混沌系统, 构建了一个新型四维忆阻混沌系统. 通过Lyapunov指数、庞加莱截面、相图、时域波动图对系统进行动力学行为分析. 针对变分法在寻找可靠圈猜想受限的问题, 创新性地提出了一种基于三角函数物理特性的优化策略. 通过该优化策略, 结合符号动力学对新系统的不稳定周期轨道进行了系统分析, 并进一步采用自适应反步法控制已知轨道的稳定性. 对新型忆阻混沌系统序列进行NIST测试, 发现该序列具有良好的伪随机性, 适用于图像加密算法的应用. 设计了基于新系统的图像加密算法, 忆阻混沌系统的应用显著提高了密钥空间和密钥敏感度, 增强了图像加密的安全性. 算法首先通过红、绿、蓝三个通道之间的跨平面置乱对彩色图像像素首次置乱, 随后进行单平面的二次置乱, 充分改变图像像素. 算法采用异或运算进行扩散, 其像素数变化率和统一平均变化强度的平均值表明其具有强大的差分攻击能力. 此外, 通过直方图、相关性、抗剪切攻击及运行时间等测试验证其可靠性. 最后, 在DPS平台上验证了实验结果与数值分析结果的一致性.
    Due to their unique nonlinear characteristics and memory effects, memristor-based chaotic systems have become a significant focus of research. However, studies on unstable periodic orbits in memristive chaotic systems are still relatively scarce. In this work, a novel four-dimensional memristive chaotic system is constructed by introducing a trigonometric-function-based memristor to enhance a three-dimensional chaotic system. The dynamical behaviors of the system are analyzed using Lyapunov exponents, Poincaré sections, phase portraits, and time-domain plots. The proposed memristive chaotic system exhibits rich dynamical characteristics, including transient behavior, intermittent chaos, and diverse attractor dynamics under parameter variations. To overcome the limitations of the variational method in finding reliable initial guesses for unstable periodic orbits, an innovative optimization strategy that utilizes the physical properties of trigonometric functions is proposed. Integrated with symbolic dynamics, this strategy can quickly obtain robust initial guesses for unstable periodic orbits within specific intervals. Furthermore, it enables these guesses to migrate into other regions of the attractor, ultimately achieving full coverage of the attractor's unstable periodic orbits. After a systematic analysis of the unstable periodic orbits in the new system, the adaptive backstepping method is employed to control the stability of the known unstable periodic orbits, namely 320 and 0*1*3. The pseudorandom sequences generated by the novel memristive chaotic system successfully passes the NIST suite, with all test items yielding P-values greater than 0.01, which confirms their excellent pseudo-random properties. Using this system for image encryption results in a key space of 10120, significantly enhancing the key space and key sensitivity of the algorithm. The encryption process begins with cross-plane scrambling operations among the RGB color channels for initial pixel processing, followed by intra-plane scrambling to further disrupt the pixel arrangement. XOR operations are then employed for pixel value diffusion. The algorithm exhibits outstanding resistance to differential attacks, with average NPCR and UACI values reaching 99.6041% and 33.4933%, respectively. Comprehensive security analyses, including histogram analysis, correlation analysis, resistance to cropping attacks, and runtime evaluation, verify that the proposed encryption scheme not only possesses strong security capabilities but also maintains high computational efficiency, making it highly suitable for practical image encryption applications. Finally, the realizability of the system is verified by utilizing a DSP circuit.
  • 图 1  基于忆阻器的混沌系统的相图 (a) x-y平面; (b) x-w平面

    Fig. 1.  Phase portraits of memristor-based chaotic system: (a) x-y plane; (b) x-w plane.

    图 2  z = 0截面上的 Poincaré截面图

    Fig. 2.  Poincaré map on z = 0 section.

    图 3  时域波形图

    Fig. 3.  Time domain waveforms.

    图 4  随系统参数b变化的混沌动力学 (a) 分岔图; (b) Lyapunov指数谱

    Fig. 4.  Chaotic dynamics varying with system parameters b: (a) Bifurcation diagram; (b) Lyapunov exponents spectra.

    图 5  吸引子的三维相图 (a) c取值为35, 45, 55, 65和75; (b) f分别取值为1, 2, 3, 4, 5, 6和7; (c) c取值分别为35, 45和55, f取值分别为1, 2和3

    Fig. 5.  The 3D phase diagram of the attractor: (a) The values of c is 35, 45, 55, 65 and 75; (b) values of f are 1, 2, 3, 4, 5, 6 and 7; (c) the values of c are 35, 45 and 55, and f values are 1, 2 and 3.

    图 6  具有相同拓扑结构的共存隐藏混沌吸引子. w0 = 250(黄色)、w0 = 100(蓝色)、w0 = 0(红色)、w0 = –100(绿色)和w0 = –250(粉红色)

    Fig. 6.  The hidden coexisting chaotic attractors with the same topology. w0 = 250 (yellow), w0 = 100 (blue), w0 = 0 (red), w0 = –100 (green), and w0 = –250 (pink).

    图 7  在参数$ \left(a,\; b,\; c,\; \text{f}\right)=\left(35,\; -36.2,\; 35,\; 1\right) $下拓扑长度二以内的不稳定周期轨道 (a) 0轨道; (b) 01轨道; (c) 02轨道; (d) 0*轨道; (e) 0*1*轨道; (f) 0*2*轨道

    Fig. 7.  Unstable periodic orbits within topological length 2 under the parameters $ \left(a,\; b,\; c,\; \text{f}\right)=\left(35,\; -36.2,\; 35,\; 1\right) $: (a) 0 orbit; (b) 01 orbit; (c) 02 orbit; (d) 0* orbit; (e) 0*1* orbit; (f) 0*2* orbit.

    图 8  在参数$ \left(a,\; b,\; c,\; f\right)=\left(35,\; -36.2,\; 35,\; -1\right) $下拓扑长度三的不稳定周期轨道 (a) 001轨道; (b) 002轨道; (c) 012轨道; (d) 0*0*1*轨道; (e) 0*0*2*轨道; (f) 0*1*2*轨道; (g) 1*32轨道; (h) 0*1*3轨道; (i) 320轨道

    Fig. 8.  Unstable periodic orbits with topological length 3 under the parameters $ \left(a,\; b,\; c,\; f\right)=\left(35,\; -36.2,\; 35,\; -1\right) $: (a) 001 orbit; (b) 002 orbit; (c) 012 orbit; (d) 0*0*1* orbit; (e) 0*0*2* orbit; (f) 0*1*2* orbit; (g) 1*32 orbit; (h) 0*1*3 orbit; (i) 320 orbit.

    图 9  在参数$ \left(a,\; b,\; c,\; f\right)=\left(35,\; -36.2,\; 35,\; 1\right) $下拓扑长度为4的6条不稳定周期轨道 (a) 0001轨道; (b) 0002轨道; (c) 0*0*1*2*轨道; (d) 1*302轨道; (e) 0*1*32轨道; (f) 3200轨道

    Fig. 9.  Six unstable periodic orbits with topological length 4 under the parameters $ \left(a,\; b,\; c,\; f\right)=\left(35,\; -36.2,\; 35,\; 1\right) $: (a) 0001 orbit; (b) 0002 orbit; (c) 0*0*1*2* orbit; (d) 1*302 orbit; (e) 0*1*32 orbit; (f) 3200 orbit.

    图 10  在区间$ w\in\left[1+18\text{π} ,\; 1+22\text{π} \right] $下拓扑长度为三的两条不稳定周期轨道 (a) $ \overline{012} $轨道; (b) $ \overline{{1}^{*}32} $轨道

    Fig. 10.  Two unstable periodic orbits with a topology length of three under the interval $ w\in\left[1+18\text{π} ,\; 1+22\text{π} \right] $: (a) $ \overline{012} $ orbit; (b) $ \overline{{1}^{*}32} $ orbit.

    图 11  最终误差对比图

    Fig. 11.  Final error comparison diagram.

    图 12  控制努力对比图

    Fig. 12.  Control effort comparison chart.

    图 13  不稳定轨道及稳定轨道的二维相图 (a) 320轨道; (b) 0*1*3轨道

    Fig. 13.  Two dimensional phase diagram of unstable and stable orbits: (a) 320 orbit; (b) 0*1*3 orbit.

    图 14  彩色图像加密解密流程图

    Fig. 14.  Flowchart on encryption and decryption of color digital image.

    图 15  系统(3)吸引子的投影 (a) x-y平面; (b) y-z平面

    Fig. 15.  The projections of attractors of system (3): (a) x-y plane; (b) y-z plane.

    图 16  图像加密解密效果 (a) 明文图像; (b) 密文图像; (c) 解密图像

    Fig. 16.  Image encryption and decryption effect: (a) Plaintext image; (b) ciphertext image; (c) decrypt image.

    图 17  参数设定为$ a=35 $, $ b=-36.2 $, $ c=35 $, $ f=1 $, 初始值设定为$ \left({x}_{0},\; {y}_{0},\; {z}_{0},\; {w}_{0}\right)=\left(1,\; 1,\; 1,\; 1\right) $ (a) 密文1; (b) 密文2; (c) 使用密钥1解密密文2的解密结果

    Fig. 17.  The parameters are set to $ a=35 $, $ b=-36.2 $, $ c=35 $, $ f=1 $, with initial values set to $ \left({x}_{0},\; {y}_{0}, $$ {z}_{0},\; {w}_{0}\right)=\left(1,\; 1,\; 1,\; 1\right) $: (a) Ciphertext 1; (b) ciphertext 2; (c) decrypt the ciphertext 2 using key 1.

    图 18  直方图测试结果 (a), (b), (c) 明文图像的RGB直方图; (d), (e), (f) 密文图像的RGB直方图

    Fig. 18.  Histogram test results: (a), (b), (c) RGB histograms of plaintext images; (d), (e), (f) RGB histograms of ciphertext images.

    图 19  红色通道的相关性测试结果 (a), (b), (c) Baboon明文图像的水平、垂直和对角的相关分布情况; (d), (e), (f) Baboon密文图像的水平、垂直和对角的相关分布情况

    Fig. 19.  Correlation test results of R channel: (a), (b), (c) Correlated distribution of the horizontal, vertical, and diagonal profiles of the plain Baboon; (d), (e), (f) correlated distribution of the horizontal, vertical, and diagonal profiles of the cipher Baboon.

    图 20  不同剪切比例下的加密图像及对应的解密图像 (a)—(c) 剪切比例分别为10%, 30%, 50%; (d)—(f) 剪切后的解密图像

    Fig. 20.  Encrypted images at different shear ratios and the corresponding decrypted image: (a)–(c) Encrypted images with shear ratios of 10%, 30%, and 50%, respectively; (d)–(f) decryption image after clipping.

    图 21  DSP实现的实验平台

    Fig. 21.  Experimental platform for DSP implementation.

    图 22  DSP仿真相图 (a) x-y平面; (b) x-w平面

    Fig. 22.  The phase diagram of DSP implementation: (a) x-y plane; (b) x-w plane.

    表 1  拓扑长度4以内的所有周期轨道

    Table 1.  Cycles up to topological length of 4.

    拓扑长度符号序列轨道周期xyzw
    100.7205016.508735–5.19322541.8555780.451683
    0*0.71958919.159465–3.34098745.1828616.502664
    2011.585344–14.017948–0.51409541.851147–3.447184
    021.584797–52.744691–13.32461857.892876–1.989351
    0*1*1.585358–10.746542–0.06907941.1044102.759155
    0*2*1.584889–53.375862–10.33295158.9634714.165480
    30012.323788–11.1434670.03356739.319552–3.425712
    0022.323284–53.026000–16.05018057.472512–1.913304
    0122.127497–7.104980–14.0253619.4002240.553446
    0*0*1*2.323795–8.7233100.24049738.6466572.800545
    0*0*2*2.323298–54.508742–8.37937560.2984724.049096
    0*1*2*2.127497–7.104981–14.0253629.4002256.836631
    1*322.9248061.0649431.86367930.3478792.633903
    0*1*32.943648–14.135816–27.12604435.4296830.855768
    3202.9441503.5972576.29429417.5595800.539793
    400013.032393–8.7285220.22978538.691885–3.484834
    00023.031796–54.515385–8.25905460.352881–2.236145
    01022.9329088.272250–0.17829838.0949090.334115
    0*0*0*1*3.032393–8.7285260.22978538.6918852.798351
    0*0*0*2*3.031796–54.515385–8.25905460.3528814.047040
    0*0*1*2*2.9329076.107148–0.29746937.3217566.667555
    1*3023.64855828.63770112.67465740.441601–1.625792
    0*1*323.6485582.4558023.76920429.5258362.773197
    0*0*1*33.651440–14.149188–26.44452435.9460040.777711
    32003.6520683.5842036.28198618.9253290.570854
    下载: 导出CSV

    表 2  NIST测试结果

    Table 2.  NIST test results.

    编号测试项P结果
    01频率测试0.470061成功
    02块频率测试0.171867成功
    03累积和测试0.456689成功
    04运行测试0.249284成功
    05最大1游程长度测试0.469760成功
    06二值矩阵秩测试0.437274成功
    07离散傅里叶变换测试0.166882成功
    08非重叠模板匹配测试0.478474成功
    09重叠模板匹配测试0.540033成功
    10通用测试0.757132成功
    11近似熵测试0.142808成功
    12随机游走测试0.353437成功
    13随机游走变体测试0.398799成功
    14序列测试0.783624成功
    15线性复杂度测试0.883171成功
    下载: 导出CSV

    表 3  不同算法的NPCR和UACI值比较

    Table 3.  Comparison of NPCR and UACI values of different algorithms.

    NPCR UACI
    R G B R G B
    本文 99.5998 99.6120 99.6006 33.4525 33.4426 33.4574
    Dehghani et al.[46] 99.5697 99.6368 99.6078 33.6510 33.5045 33.5231
    Xin et al.[47] 99.6299 99.6037 99.6090 33.4236 33.4326 33.4886
    Wang et al.[48] 99.6002 99.6094 99.6155 33.4128 33.4347 33.4488
    Xiao et al.[49] 99.6227 99.6304 99.6052 33.3952 33.4674 33.4584
    下载: 导出CSV

    表 4  不同尺寸图像的加密时间

    Table 4.  Encryption time of different image sizes.

    图像尺寸运行时间
    128×1280.140711
    256×2560.287916
    512×5120.64476
    1024×10242.970142
    下载: 导出CSV
  • [1]

    Sella Y, Broderick N A, Stouffer K M, McEwan D L, Ausubel F M, Casadevall A, Bergman A 2024 Msystems 9 e01110-23

    [2]

    Han Z T, Sun B, Banerjee S, Mou J 2024 Chaos, Solitons Fractals 184 115020Google Scholar

    [3]

    Xu Q, Ding X C, Wang N, Chen B, Parastesh F, Chen M 2024 Chaos, Solitons Fractals 187 115339Google Scholar

    [4]

    Murphy K A, Bassett D S 2017 Phys. Rev. Lett. 132 197201

    [5]

    X Yan, Q Hu, L Teng, Y Su 2024 Chaos, Solitons Fractals 185 115146Google Scholar

    [6]

    Vogl M 2024 Commun Nonlinear Sci. Numer. Simul. 130 107760Google Scholar

    [7]

    Rehman Z U, Boulaaras S, Jan R, Ahmad I, Bahramand S 2024 J. Comput Sci. 75 102204Google Scholar

    [8]

    Li L 2024 Expert Syst. Appl. 252 124316Google Scholar

    [9]

    Umar T, Nadeem M, Anwer F 2004 Expert Syst. Appl. 257 125050

    [10]

    Wang C H, Tang D, Lin H, Yu F, Sun Y C 2024 Expert Syst. Appl. 242 122513Google Scholar

    [11]

    Leonov G, Kuznetsov N 2013 Int. J. Bifurcation Chaos 23 1330002Google Scholar

    [12]

    Dong C W, Yang M 2024 Chin. J. Phys. 89 930Google Scholar

    [13]

    Dong C W, Yang M, Jia L, Li Z R 2024 Physica A 633 129391Google Scholar

    [14]

    Wei D S, Dong C W 2024 Phys. Scr. 99 085251Google Scholar

    [15]

    Dong C W 2022 Fractal Fract. 6 547Google Scholar

    [16]

    Dong C W, Yang M 2024 Fractal Fract. 8 266Google Scholar

    [17]

    Dong C W, Iu H H C 2025 Chin. J. Phys. 97 433Google Scholar

    [18]

    王培杰, 吴国祯 2005 物理学报 54 3034Google Scholar

    Wang P J, Wu G Z 2005 Acta Phys. Sin. 54 3034Google Scholar

    [19]

    Sanchez J, Net M. 2010 Int. J. Bifuration Chaos 20 43Google Scholar

    [20]

    Lan Y, Cvitanović P 2004 Phys. Rev. E 69 016217Google Scholar

    [21]

    董成伟 2018 物理学报 67 240501Google Scholar

    Dong C W 2018 Acta Phys. Sin. 67 240501Google Scholar

    [22]

    Chua L O 1971 IEEE Trans. Circuit Theor. 18 507Google Scholar

    [23]

    Strukov D B, Snider G S, Stewart D R, Stanley W R 2008 Nature 453 80Google Scholar

    [24]

    Xiao Y Y, Jiang B, Zhang Z, Ke S W, Jin Y Y, Wen X, Ye C 2023 Sci. Technol. Adv. Mater. 24 2162323Google Scholar

    [25]

    Zhang L, Li Z, Peng Y 2024 Chaos, Solitons Fractals 185 115109Google Scholar

    [26]

    Diao Y F, Huang S F, Huang L Q, Xiong X M, Yang J, Cai S T 2024 Chaos, Solitons Fractals 188 115526Google Scholar

    [27]

    An X L, Liu S Y, Xiong L, Zhang J G, Li XY 2024 Expert Syst. Appl. 243 122899Google Scholar

    [28]

    Kong X, Yu F, Yao W, Cai S, Zhang J, Lin H 2024 Neural Networks 171 85Google Scholar

    [29]

    He S, Hu K, Wang M, Wang H, Wu X 2024 Chaos, Solitons Fractals 188 115517Google Scholar

    [30]

    赖强, 王君 2024 物理学报 73 180503Google Scholar

    Lai Q, Wang J 2024 Acta Phys. Sin. 73 180503Google Scholar

    [31]

    Njitacke Z T, Takembo C N, Awrejcewicz J, Fouda H P E, Kengne J 2022 Chaos, Solitons Fractals 160 112211Google Scholar

    [32]

    Zhang X, Xu J, Moshayedi A J 2024 Chaos, Solitons Fractals 179 114460Google Scholar

    [33]

    Lampartová A, Lampart M 2024 Chaos, Solitons Fractals 182 114863Google Scholar

    [34]

    武花干, 边逸轩, 陈墨, 徐权 2024 电子与信息学报 46 3818

    Wu H G, Bian Y X, Chen M, Xu Q 2024 J. Electron. Inf. Technol. 46 3818

    [35]

    Hua C C, Guan X P 2004 Chaos, Solitons Fractals 22 55

    [36]

    Konishi K, Hirai M, Kokame H 1998 Phys. Lett. A 245 511Google Scholar

    [37]

    Dadras S, Momeni H R 2009 Chaos, Solitons Fractals 42 3140Google Scholar

    [38]

    Pan Y, Ji W, Liang H 2022 IEEE Trans. Circuits Syst. Express Briefs. 69 5064Google Scholar

    [39]

    Zhang X L, Yang X Y, Huang C D, Cao J D, Liu H 2024 Inf. Sci. 661 120148Google Scholar

    [40]

    王震, 李永新, 惠小健, 吕雷 2011 物理学报 60 010513Google Scholar

    Wang Z, Li Y X, Hui X J, Lü L 2011 Acta Phys. Sin. 60 010513Google Scholar

    [41]

    Wu F, Wang G, Zhuang S, Wang K, Keimer A, Stoica I, Bayen A 2023 IEEE Trans. Autom. Sci. Eng. 21 2088

    [42]

    Guo P, Shi Q, Jian Z, Zhang J, Ding Q, Yan W 2024 Chaos, Solitons Fractals 180 114524Google Scholar

    [43]

    Li X J, Sun B, Bi X G, Yan H Z, Wang L N 2024 Mobile Networks Appl. 29 583Google Scholar

    [44]

    Chen J X, Zhu Z L, Zhang L B, Zhang Y S, Yang B Q 2017 Signal Process. 142 340

    [45]

    Wang L N, Zhou N R, Sun B, Cao Y H, Mou J 2024 Chin. Phys. B 33 050501Google Scholar

    [46]

    Dehghani R, Kheiri H 2024 Multimedia Tools Appl. 83 17429

    [47]

    Xin J, Hu H, Zheng J 2023 Nonlinear Dyn. 111 7859Google Scholar

    [48]

    Wang Q, Zhang X, Zhao X 2023 Nonlinear Dyn. 111 22679Google Scholar

    [49]

    Xiao W, Xuemei X, Kehui S, Zhaohui J, Mingjun L, Jun W 2023 Nonlinear Dyn. 111 14513Google Scholar

    [50]

    Zhang Z Y, Cao Y H, Zhou N R, Xu X Y, Mou J 2025 Appl. Intell. 55 61Google Scholar

    [51]

    Cao H L, Cao Y H, Qin L, Mou J 2025 Chaos, Solitons Fractals 191 115857Google Scholar

  • [1] 潘奕君, 董成伟. 具有多种共存现象的新型忆阻混沌系统的周期轨道分析及DSP实现. 物理学报, doi: 10.7498/aps.74.20251102
    [2] 张宇琦, 王俊杰, 吕子玉, 韩素婷. 应用于感存算一体化系统的多模调控忆阻器. 物理学报, doi: 10.7498/aps.71.20220226
    [3] 刘瀚扬, 华南, 王一诺, 梁俊卿, 马鸿洋. 基于量子随机行走和多维混沌的三维图像加密算法. 物理学报, doi: 10.7498/aps.71.20220466
    [4] 赵智鹏, 周双, 王兴元. 基于深度学习的新混沌信号及其在图像加密中的应用. 物理学报, doi: 10.7498/aps.70.20210561
    [5] 方洁, 姜明浩, 安小宇, 孙军伟. 基于混沌加密和DNA编码的“一图一密”图像加密算法. 物理学报, doi: 10.7498/aps.70.20201642
    [6] 闫登卫, 王丽丹, 段书凯. 基于忆阻器的多涡卷混沌系统及其脉冲同步控制. 物理学报, doi: 10.7498/aps.67.20180025
    [7] 董成伟. 非扩散洛伦兹系统的周期轨道. 物理学报, doi: 10.7498/aps.67.20181581
    [8] 肖利全, 段书凯, 王丽丹. 基于Julia分形的多涡卷忆阻混沌系统. 物理学报, doi: 10.7498/aps.67.20172761
    [9] 王伟, 曾以成, 孙睿婷. 含三个忆阻器的六阶混沌电路研究. 物理学报, doi: 10.7498/aps.66.040502
    [10] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器. 物理学报, doi: 10.7498/aps.66.030502
    [11] 许雅明, 王丽丹, 段书凯. 磁控二氧化钛忆阻混沌系统及现场可编程逻辑门阵列硬件实现. 物理学报, doi: 10.7498/aps.65.120503
    [12] 阮静雅, 孙克辉, 牟俊. 基于忆阻器反馈的Lorenz超混沌系统及其电路实现. 物理学报, doi: 10.7498/aps.65.190502
    [13] 洪庆辉, 李志军, 曾金芳, 曾以成. 基于电流反馈运算放大器的忆阻混沌电路设计与仿真. 物理学报, doi: 10.7498/aps.63.180502
    [14] 杨芳艳, 冷家丽, 李清都. 基于Chua电路的四维超混沌忆阻电路. 物理学报, doi: 10.7498/aps.63.080502
    [15] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路. 物理学报, doi: 10.7498/aps.63.010502
    [16] 刘玉东, 王连明. 基于忆阻器的spiking神经网络在图像边缘提取中的应用. 物理学报, doi: 10.7498/aps.63.080503
    [17] 许碧荣. 一种最简的并行忆阻器混沌系统. 物理学报, doi: 10.7498/aps.62.190506
    [18] 朱从旭, 孙克辉. 对一类超混沌图像加密算法的密码分析与改进. 物理学报, doi: 10.7498/aps.61.120503
    [19] 包伯成, 胡文, 许建平, 刘中, 邹凌. 忆阻混沌电路的分析与实现. 物理学报, doi: 10.7498/aps.60.120502
    [20] 孙福艳, 吕宗旺. 空间混沌序列的加密特性研究. 物理学报, doi: 10.7498/aps.60.040503
计量
  • 文章访问数:  677
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-01
  • 修回日期:  2025-10-04
  • 上网日期:  2025-10-24

/

返回文章
返回