搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO分子光电离时间延迟的核间距依赖性

白光如 任仲雪 张斌 杨艳 郎跃 刘金磊 赵晶 赵增秀

引用本文:
Citation:

CO分子光电离时间延迟的核间距依赖性

白光如, 任仲雪, 张斌, 杨艳, 郎跃, 刘金磊, 赵晶, 赵增秀

Internuclear-distance dependence of photoionization time delay in CO

BAI Guangru, REN Zhongxue, ZHANG Bin, YANG Yan, LANG Yue, LIU Jinlei, ZHAO Jing, ZHAO Zengxiu
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 原子分子中的光电离时间延迟是阿秒物理学中的基本现象, 它编码了原子分子中的电子结构和动力学信息. 本文主要研究了一氧化碳(CO)分子最高占据轨道$5\sigma \to k\sigma$通道光电离时间延迟的核间距依赖性. 采用基于李普曼-施温格方程的量子散射理论, 计算了不同核间距下的微分光电离截面和时间延迟. 结果表明, 在截面峰值和极小值能量附近, 光电离时间延迟出现明显极值, 且随核间距显著变化. 分波分析表明, $l=3$分波的形状共振是光电离截面与时间延迟出现峰值的原因, 其有效势场的核间距依赖性决定了光电离时间延迟的峰值能量位置和大小的变化. 在截面极小值附近, 利用双中心干涉模型解释了沿O端和C端出射时的光电离时间延迟分别出现正、负峰值的现象, 并阐明了其随核间距变化的物理机制. 本文的工作揭示了CO分子光电离时间延迟的核间距依赖规律, 有助于推动光电离时间延迟在分子结构及电子动力学探测中的应用.
    Photoionization time delay in atoms and molecules is a fundamental phenomenon in attosecond physics, encoding essential information about electronic structure and dynamics. Compared with atoms, molecules exhibit anisotropic potentials and additional nuclear degrees of freedom, which make the interpretation of molecular photoionization time delays more intricate but also more informative. In this work, we investigate the dependence of the photoionization time delay on the internuclear distance in the $5\sigma \to k\sigma$ ionization channel of carbon monoxide (CO) molecules. The molecular ground state is obtained using the Hartree–Fock method, and the photoionization process is treated within quantum scattering theory based on the iterative Schwinger variational principle of the Lippmann–Schwinger equation. Numerical calculations are performed with the ePolyScat program to obtain molecular-frame differential photoionization cross sections and time delays at various internuclear distances. Our results show that the extrema of the photoionization time delay occur near the peaks and dips of the differential cross section and shift toward lower energies as the internuclear distance $R$ increases. At low energies, the time delay along the oxygen end increases with $R$, while that along the carbon end decreases, which is attributed to the asymmetric charge distribution and the resulting short-range potential difference between the two atomic sites. Around the shape-resonance energy region, both cross section and time delay display pronounced peaks associated with an $l=3$ quasi-bound state. As $R$ increases, the effective potential barrier broadens, the quasi-bound state energy moves to lower values, and its lifetime becomes longer, leading to enhanced resonance amplitude and increased time delay. In the high-energy region, opposite-sign peaks of time delay are found along the O and C directions, corresponding to minima in the cross section. These features are well explained by a two-center interference model, where increasing $R$ shifts the interference minima and the associated time-delay peaks toward lower energies. This study provides deeper insights into the photoionization dynamics of CO molecules, accounting for the role of nuclear motion, and offers valuable references for studying the photoelectron dynamics of more complex molecular systems.
  • [1]

    Wigner E P 1955 Phys. Rev. 98 145

    [2]

    Smith F T 1960 Phys. Rev. 119 2098

    [3]

    Hargrove L E, Fork R L, Pollack M A 1964 Appl. Phys. Lett. 5 4

    [4]

    Fork R, Greene B, Shank C 1981 In Conference on Lasers and Electro-Optics (Washington, D.C., USA: Optica Publishing Group), p WL1

    [5]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219

    [6]

    Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G, Agostini P 2001 Science 292 1689

    [7]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509

    [8]

    Wang X W, Xiao F, Wang J C, Wang L, Zhang B, Liu J L, Zhao J, Zhao Z X 2024 Ultrafast Sci. 4 0080

    [9]

    Itatani J, Quéré F, Yudin G L, Ivanov M Y, Krausz F, Corkum P B 2002 Phys. Rev. Lett. 88 173903

    [10]

    Muller H G 2002 Appl. Phys. B 74 s17

    [11]

    Schultze M, Fieß M, Karpowicz N, Gagnon J, Korbman M, Hofstetter M, Neppl S, Cavalieri A L, Komninos Y, Mercouris T, Nicolaides C A, Pazourek R, Nagele S, Feist J, Burgdörfer J, Azzeer A M, Ernstorfer R, Kienberger R, Kleineberg U, Goulielmakis E, Krausz F, Yakovlev V S 2010 Science 328 1658

    [12]

    Pazourek R, Nagele S, Burgdörfer J 2015 Rev. Mod. Phys. 87 765

    [13]

    Kheifets A S 2023 J. Phys. B: At. Mol. Opt. Phys. 56 022001

    [14]

    Magrakvelidze M, Madjet M E A, Chakraborty H S 2016 Phys. Rev. A 94 013429

    [15]

    Alexandridi C, Platzer D, Barreau L, Busto D, Zhong S Y, Turconi M, Neoričić L, Laurell H, Arnold C L, Borot A, Hergott J F, Tcherbakoff O, Lejman M, Gisselbrecht M, Lindroth E, L’ Huillier A, Dahlström J M, Salières P 2021 Phys. Rev. Res. 3 L012012

    [16]

    Zhong S Y, Vinbladh J, Busto D, Squibb R J, Isinger M, Neoričić L, Laurell H, Weissenbilder R, Arnold C L, Feifel R, Dahlström J M, Wendin G, Gisselbrecht M, Lindroth E, L’ Huillier A 2020 Nat. Commun. 11 5042

    [17]

    Ossiander M, Siegrist F, Shirvanyan V, Pazourek R, Sommer A, Latka T, Guggenmos A, Nagele S, Feist J, Burgdörfer J, Kienberger R, Schultze M 2017 Nat. Phys. 13 280

    [18]

    Cirelli C, Marante C, Heuser S, Petersson C L M, Galán ff J, Argenti L, Zhong S Y, Busto D, Isinger M, Nandi S, Maclot S, Rading L, Johnsson P, Gisselbrecht M, Lucchini M, Gallmann L, Dahlström J M, Lindroth E, L’ Huillier A, Martín F, Keller U 2018 Nat. Commun. 9 955

    [19]

    Holzmeier F, Joseph J, Houver J C, Lebech M, Dowek D, Lucchese R R 2021 Nat. Commun. 12 7343

    [20]

    Huppert M, Jordan I, Baykusheva D, Von Conta A, Wörner H J 2016 Phy. Rev. Lett. 117 093001

    [21]

    Gong X C, Jiang W Y, Tong J H, Qiang J J, Lu P F, Ni H C, Lucchese R, Ueda K, Wu J 2022 Phys. Rev. X 12 011002

    [22]

    Nandi S, Plésiat É, Zhong S Y, Palacios A, Busto D, Isinger M, Neoričić L, Arnold C, Squibb R, Feifel R, et al. 2020 Sci. Adv. 6 eaba7762

    [23]

    Gong X C, Plésiat É, Palacios A, Heck S, Martín F, Wörner H J 2023 Nat. Commun. 14 4402

    [24]

    Desrier A, Berkane M, Lévêque C, Taïeb R, Caillat J 2024 Phys. Rev. A 109 053106

    [25]

    Werner H, Knowles P J, Knizia G, Manby F R, Schütz M 2012 WIREs Comput. Mol. Sci. 2 242

    [26]

    Werner H J, Knowles P J, Manby F R, Black J A, Doll K, Heßelmann A, Kats D, Köhn A, Korona T, Kreplin D A, Ma Q L, Miller T F, Mitrushchenkov A, Peterson K A, Polyak I, Rauhut G, Sibaev M 2020 J. Chem. Phys. 152 144107

    [27]

    Werner H J, Knowles P J, Celani P, Györffy W, Hesselmann A, Kats D, Knizia G, Köhn A, Korona T, Kreplin D, Lindh R, Ma Q L, Manby F R, Mitrushenkov A, Rauhut G, Schütz M, Shamasundar K R, Adler T B, Amos R D, Bennie S J, Bernhardsson A, Berning A, Black J A, Bygrave P J, Cimiraglia R, Cooper D L, Coughtrie D, Deegan M J O, Dobbyn A J, Doll K, Dornbach M, Eckert F, Erfort S, Goll E, Hampel C, Hetzer G, Hill J G, Hodges M, Hrenar T, Jansen G, Köppl C, Kollmar C, Lee S J R, Liu Y, Lloyd A W, Mata R A, May A J, Mussard B, McNicholas S J, Meyer W, Miller III T F, Mura M E, Nicklass A, O’Neill D P, Palmieri P, Peng D, Peterson K A, Pflüger K, Pitzer R, Polyak I, Reiher M, Richardson J O, Robinson J B, Schröder B, Schwilk M, Shiozaki T, Sibaev M, Stoll H, Stone A J, Tarroni R, Thorsteinsson T, Toulouse J, Wang M, Welborn M, Ziegler B. See https://www.molpro.net

    [28]

    Lucchese R R, Takatsuka K, McKoy V 1986 Phys. Rep. 131 147

    [29]

    Gianturco F A, Lucchese R R, Sanna N 1994 J. Chem. Phys. 100 6464

    [30]

    Natalense A P P, Lucchese R R 1999 J. Chem. Phys. 111 5344

    [31]

    Baykusheva D, Wörner H J 2017 J. Chem. Phys. 146 124306

    [32]

    Gong X C, Heck S, Jelovina D, Perry C, Zinchenko K, Lucchese R, Wörner H J 2022 Nature 609 507

    [33]

    Biswas S, Förg B, Ortmann L, Schötz J, Schweinberger W, Zimmermann T, Pi L W, Baykusheva D, Masood H A, Liontos I, Kamal A M, Kling N G, Alharbi A F, Alharbi M, Azzeer A M, Hartmann G, Wörner H J, Landsman A S, Kling M F 2020 Nat. Phys. 16 778

    [34]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580

    [35]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graph. 14 33

    [36]

    Lucchese R R, Gianturco F 1996 Int. Rev. Phys. Chem. 15 429

    [37]

    Cohen H D, Fano U 1966 Phys. Rev. 150 30

    [38]

    Ueda K, Liu X J, Prümper G, Lischke T, Tanaka T, Hoshino M, Tanaka H, Minkov I, Kimberg V, Gel’ mukhanov F 2006 Chem. Phys. 329 329

    [39]

    Liao Y J, Zhou Y M, Pi L W, Ke Q H, Liang J T, Zhao Y, Li M, Lu P X 2021 Phys. Rev. A 104 013110

  • [1] 卫孟昊, 李兴, 罗嗣佐, 赫兰海, 丁大军. 强场多光子跃迁干涉方法探测原子分子电离时间延迟. 物理学报, doi: 10.7498/aps.74.20250647
    [2] 王景哲, 董福龙, 刘杰. 时间延迟双色飞秒激光中$\text{H}_2^+$的解离动力学研究. 物理学报, doi: 10.7498/aps.73.20241283
    [3] 李卫艳, 刘娜, 王赏. 拉伸到大核间距的分子离子谐波辐射谱上复杂干涉结构的物理起源. 物理学报, doi: 10.7498/aps.72.20222410
    [4] 阿秒物理专题编者按. 物理学报, doi: 10.7498/aps.71.230101
    [5] 廖晶晶, 蔺福军. 混合手征活性粒子在时间延迟反馈下的扩散和分离. 物理学报, doi: 10.7498/aps.69.20200505
    [6] 俞祖卿, 杨魏吉, 何峰. H2+在强激光脉冲作用下的电离率和原子核间距的关系. 物理学报, doi: 10.7498/aps.65.204202
    [7] 于文婷, 唐军, 罗进明. 时间延迟对基因调节回路中生物记忆影响研究. 物理学报, doi: 10.7498/aps.64.068702
    [8] 邱巍, 高波, 林鹏, 周婧婷, 李佳, 蒋秋莉, 吕品, 马英驰. 掺铒光纤中亚稳态粒子振荡和慢光时间延迟关系研究. 物理学报, doi: 10.7498/aps.62.214205
    [9] 杨林静. Logistic系统跃迁率的时间延迟效应. 物理学报, doi: 10.7498/aps.60.050502
    [10] 童爱红, 廖青, 周月明, 陆培祥. 不同分子取向下氢分子非次序双电离对核间距的依赖关系. 物理学报, doi: 10.7498/aps.60.043301
    [11] 林灵, 闫勇, 梅冬成. 时间延迟增强双稳系统的共振抑制. 物理学报, doi: 10.7498/aps.59.2240
    [12] 魏雅娜, 杨世平. 分子核间距对非时序双电离的影响. 物理学报, doi: 10.7498/aps.59.7298
    [13] 李钱光, 兰鹏飞, 洪伟毅, 张庆斌, 陆培祥. 阿秒电离门调控宽带超连续谱的传播特性. 物理学报, doi: 10.7498/aps.58.5679
    [14] 谢振华, 许录平, 倪广仁. 基于双谱的脉冲星累积脉冲轮廓时间延迟测量. 物理学报, doi: 10.7498/aps.57.6683
    [15] 郭永峰, 徐 伟. 关联白噪声驱动的具有时间延迟的Logistic系统. 物理学报, doi: 10.7498/aps.57.6081
    [16] 杨 汝, 张 波. DC-DC buck变换器时间延迟反馈混沌化控制. 物理学报, doi: 10.7498/aps.56.3789
    [17] 葛愉成. 用变换方程测量窄带阿秒超紫外线XUV脉冲的强度时间结构. 物理学报, doi: 10.7498/aps.55.3386
    [18] 葛愉成. 用光电子能谱相位确定法同时测量阿秒超紫外线XUV脉冲的频率和强度时间分布. 物理学报, doi: 10.7498/aps.54.2653
    [19] 黄显高, 徐健学, 黄伟, 朱甫臣. 混沌系统的时间延迟同步误差分析. 物理学报, doi: 10.7498/aps.50.2296
    [20] 缪竞威, 师勉恭, 杨百方, 唐阿友, N.Cue. 4HeH+核间距的实验测定. 物理学报, doi: 10.7498/aps.49.1058
计量
  • 文章访问数:  26
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-22

/

返回文章
返回