搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玻色-爱因斯坦凝聚体在莫尔晶格势中的带隙孤子

涂朴 赵茜 席保龙 邵凯花 席忠红 苟金明 王永智 石玉仁

引用本文:
Citation:

玻色-爱因斯坦凝聚体在莫尔晶格势中的带隙孤子

涂朴, 赵茜, 席保龙, 邵凯花, 席忠红, 苟金明, 王永智, 石玉仁

Gap Solitons in Bose-Einstein Condensate under Moiré optical lattice

U Pu, ZHAO Xi, XI Baolong, SHAO Kaihua, XI Zhonghong, GOU Jinming, WANG Yongzhi, SHI Yuren
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 本文探讨了莫尔晶格扭转角对玻色-爱因斯坦凝聚体中带隙孤子的调控作用. 结果表明, 扭转角度明显影响莫尔晶格的周期和系统的线性能带结构, 对带隙孤子的结构及稳定性有着重要影响. 在半无限带隙(吸引作用主导), 势阱深度越深, 孤子密度越大. 而在第一带隙(排斥作用主导), 孤子密度随势阱深度呈现相反变化规律. 线性稳定性分析和非线性动力学演化表明, 第一带隙内找到的孤子普遍稳定; 而在半无限带隙中, 孤子稳定性与其类型及空间构型密切相关: 单峰孤子, 峰间距大的多峰孤子及峰间距近的异相孤子较为稳定, 而同相多峰孤子则易失稳. 研究同时发现, 越靠近能带边缘, 孤子的稳定性越好. 该研究为调控莫尔超晶格中的非线性孤子提供了理论依据.
    This study investigates gap solitons and their stability in Bose-Einstein condensates confined in Moiré optical lattices with distinct twisted angles. The results demonstrate that the twisted angle significantly modulates the Moiré periodicity and the flatness of low bands. For sufficiently large angular differences, smaller twisted angles generally lead to larger Moiré periods and flatter low bands, though this trend becomes less consistent at minimal angular differences. Moreover, smaller twisted angles yield more complex potential structures, which modify gap positions and widths, consequently affecting the properties of gap solitons. Using the Newton-conjugate gradient method, we identify various types of solitons in Moiré lattice with four different twisted angles, observing that solitons can exist over a broader range of potential depths at smaller twisted angles. The density distributions of solitons exhibit markedly different behaviors in different gaps: in the semi-infinite gap dominated by attractive interactions, deeper potentials lead to reduced soliton density, whereas in the first gap governed by repulsive interactions, deeper potentials enhance soliton density distributions. Linear stability analysis and nonlinear dynamical evolution results indicate that solitons found in the first gap(including both single-humped and multi-humped structures) demonstrate robust dynamical stability, whereas in the semi-infinite gap, single-humped solitons maintain good stability, while closely separated multi-humped in-phase solitons tend to be unstable, with enhanced stability observed for solitons located closer to the band edges. This work provides a theoretical foundation for manipulating nonlinear solitons in Moiré superlattices.
  • [1]

    Chen W, Mills D L 1987 Phys. Rev. Lett. 58 160

    [2]

    Sipe J E, Winful H G 1988 Opt. Lett. 13 132

    [3]

    Mills D L, Trullinger S E 1987 Phys. Rev. B 36 947

    [4]

    Sakaguchi H, Malomed B A 2006 Phys. Rev. E 74 026601

    [5]

    Baizakov B B , Malomed B A, Salerno M 2003 Europhys. Lett. 63 642

    [6]

    Bloch I, Dalibard J, Nascimbene S 2012 Nat. Phys. 8 267

    [7]

    Rodas-Verde M I, Michinel H, Pérez-García V M 2005 Phys. Rev. Lett. 95 153903

    [8]

    Ngo T V, Tsarev D V, Lee R K, Alodjants A P 2021 Sci. Rep. 11 19363

    [9]

    Fleischer J W, Segev M, Efremidis N K, Christodoulides D N 2003 Nature 422 147

    [10]

    Louis P J, Ostrovskaya E A, Peng P, Savage C M, Kivshar Y S 2003 Phys. Rev. A 67 013602

    [11]

    Ostrovskaya E A, Kivshar Y S 2003 Phys. Rev. Lett. 90 160407

    [12]

    Chen Z P, Malomed B A 2017 Phys. Rev. E 95 032217

    [13]

    Sakaguchi H, Malomed B A 2018 Phys. Rev. A 97 013607

    [14]

    Fu Q D, Wang P, Huang C, Kartashov Y V, Torner L, Konotop V V, Ye F W 2020 Nat. Photonics 14 663

    [15]

    Wang P, Fu Q D, Li Y R, Ye F W 2021 Chin. Opt. 14 986 (in Chinese) [王鹏, 傅其栋, 李雨芮, 叶芳伟 2021 中国光学14 986]

    [16]

    Wang P, Zheng Y L, Chen X F, Huang C M, Kartashov Y V, Torner L, Konotop V V, Ye F W 2020 Nature 577 42

    [17]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C 2018 Nature 556 80

    [18]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43

    [19]

    Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R 2019 Science 363 1059

    [20]

    Lu X B, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A 2019 Nature 574 653

    [21]

    López M R, Peñaranda F, Christensen J, San-Jose P 2020 Phys. Rev. Lett. 125 214301

    [22]

    Wang J, Mu X, Wang L, Sun M 2019 Mater. Today Phys. 9 100099

    [23]

    Andrei E Y, MacDonald A H 2020 Nat. Mater 19 1265

    [24]

    Kennes D M, Claassen M, Xian L, Georges A, Millis A J, Hone J, Dean C R, Basov D N, Pasupathy A N, Rubio A 2021 Nat. Phys. 17 155

    [25]

    Carr S, Massatt D, Fang S, Cazeaux P, Luskin M, Kaxiras E 2017 Phys. Rev. B 95 075420

    [26]

    Deng Y, Oudich M, Gerard N J, Ji J, Lu M 2020 Phys. Rev. B 102 180304

    [27]

    Eiermann B, Anker T, Albiez M, Taglieber M, Treutlein P, Marzlin K P, Oberthaler M K 2004 Phys. Rev. Lett. 92 230401

    [28]

    Lobanov V E, Kartashov Y V, Konotop V V 2014 Phys. Rev. Lett. 112 180403

    [29]

    Kartashov Y V, Konotop V V, Abdullaev F K 2013 Phys. Rev. Lett. 111 060402

    [30]

    Zhang Y P, Xu Y, Busch T 2015 Phys. Rev. A 91 043629

    [31]

    Su J, Lyu H, Chen Y Y, 2021 Phys. Rev. A 104 043315

    [32]

    Morsch O, Oberthaler M 2006 Rev. Mod. Phys. 78 179

    [33]

    Meng H J, Wang J, Fan X B, Wang Q Q, Shao K H, Zhao Y X, Wang W Y, Shi Y R 2022 Phys. A 598 127337

    [34]

    Meng H J, Wang J, Fan X B, Wang Q Q, Shao K H, Zhao Y X, Wang W Y, Shi Y R 2022 Phys. Rev. E 108 034215

    [35]

    O’Riordan L J, White A C, Busch Th 2016 Phys. Rev. A 93 023609

    [36]

    González-Tudela A, Cirac J I 2019 Phys. Rev. A 100 053604

    [37]

    Liu Y, Holder T, Yan B 2021 Innovation 2 100085

    [38]

    Meng Z M, Wang L W, Han W, Liu F D, Wen K, Gao C, Wang P J, Chin C, Zhang J 2023 Nature 615 231

    [39]

    Gómez-Urrea H A, Ospina-Medina M C, Correa-Abad J D, Mora-Ramos M E, Caro-Lopera F J 2020 Opt. Commun. 459 125081

    [40]

    Zhang Z, Wang Y, Watanabe K, Taniguchi T, Ueno K, Tutuc E, LeRoy B J 2020 Nat. Phys. 16 1093

    [41]

    Utama M I, Koch R J, Lee K, Leconte N, Li H, Zhao S, Jiang L, Zhu J, Watanabe K, Taniguchi T, Ashby P D 2021 Nat. Phys. 17 184

    [42]

    Balents L, Dean C R, Efetov D K, Young A F 2020 Nat. Phys. 16 725

    [43]

    Rosendo López M, Peñaranda F, Christensen J, San-Jose P 2020 Phys. Rev. Lett. 125 214301

    [44]

    Tu P, Wang Q Q, Ma J P, Shao K H, Zhao X, Xi B L, Zhang X F, Shi Y R 2025 Chaos Solitons Fractals 190 115773

    [45]

    Tu P, Ma J P, Zhao X, Xi B L, Shao K H, Zhang X F, Shi Y R 2025 Phys. A 666 130504

    [46]

    Xu L, Chen S L, Yang X Y, Zhang X F 2023 Acta Phys. Sin. 72 105 (in Chinese) [许丽, 陈思霖, 杨雪滢, 张晓斐 2023 物理学报 72 105]

    [47]

    Petrov D S, Holzmann M, Shlyapnikov G V 2000 Phys. Rev. Lett. 84 2551

    [48]

    Hadzibabic Z, Krüger P, Cheneau M, Battelier B, Dalibard J 2006 Nature 441 1118

    [49]

    Shi Y R, Wang X L, Wang G H, Liu C B, Yang H J 2013 Commun. Theor. Phys. 59 273

    [50]

    Yang J K 2010 Nonlinear Waves in Integrable and Nonintegrable Systems (Philadelphia: SIAM) p269

    [51]

    Yang J K 2009 J. Comp. Phys. 228 7007

    [52]

    Meng H J, Zhou Y S, Li X L, Wan X H, Zhou Z K, Wang W Y, Shi Y R 2021 Phys. A 577 126087

  • [1] 古杰, 马立国. 莫尔晶格中的激子绝缘体. 物理学报, doi: 10.7498/aps.72.20230079
    [2] 许丽, 陈思霖, 杨雪滢, 张晓斐. 周期莫尔晶格中里德伯缀饰玻色气体的基态结构. 物理学报, doi: 10.7498/aps.72.20222292
    [3] 贾瑞煜, 方乒乒, 高超, 林机. 玻色-爱因斯坦凝聚体中的淬火孤子与冲击波. 物理学报, doi: 10.7498/aps.70.20210564
    [4] 郭慧, 王雅君, 王林雪, 张晓斐. 玻色-爱因斯坦凝聚中的环状暗孤子动力学. 物理学报, doi: 10.7498/aps.69.20191424
    [5] 唐娜, 杨雪滢, 宋琳, 张娟, 李晓霖, 周志坤, 石玉仁. 三体相互作用下准一维玻色-爱因斯坦凝聚体中的带隙孤子及其稳定性. 物理学报, doi: 10.7498/aps.69.20191278
    [6] 文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐. 线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响. 物理学报, doi: 10.7498/aps.68.20182013
    [7] 林奎鑫, 李多生, 叶寅, 江五贵, 叶志国, Qinghua Qin, 邹伟. 扭转双层石墨烯物理性质、制备方法及其应用的研究进展. 物理学报, doi: 10.7498/aps.67.20181432
    [8] 何章明, 张志强. 玻色-爱因斯坦凝聚体中的双孤子相互作用操控. 物理学报, doi: 10.7498/aps.65.110502
    [9] 陈海军. 变分法研究二维光晶格中玻色-爱因斯坦凝聚的调制不稳定性. 物理学报, doi: 10.7498/aps.64.054702
    [10] 袁都奇. 三维简谐势阱中玻色-爱因斯坦凝聚的边界效应. 物理学报, doi: 10.7498/aps.63.170501
    [11] 李志, 王建忠. 自旋-轨道耦合玻色-爱因斯坦凝聚势垒散射特性的研究. 物理学报, doi: 10.7498/aps.62.100306
    [12] 宋立军, 严冬, 刘烨. 玻色-爱因斯坦凝聚系统的量子Fisher信息与混沌. 物理学报, doi: 10.7498/aps.60.120302
    [13] 严冬, 宋立军, 陈殿伟. 两分量玻色-爱因斯坦凝聚系统的自旋压缩. 物理学报, doi: 10.7498/aps.58.3679
    [14] 曲春雷, 赵清. 周期驱动玻色-爱因斯坦凝聚系统的棘齿效应. 物理学报, doi: 10.7498/aps.58.4390
    [15] 宗丰德, 杨阳, 张解放. 外势场作用下的玻色-爱因斯坦凝聚啁啾孤子的演化与操控. 物理学报, doi: 10.7498/aps.58.3670
    [16] 王海雷, 杨世平. 三势阱中玻色-爱因斯坦凝聚的开关特性. 物理学报, doi: 10.7498/aps.57.4700
    [17] 王志霞, 张喜和, 沈 柯. 玻色-爱因斯坦凝聚中的混沌反控制. 物理学报, doi: 10.7498/aps.57.7586
    [18] 宗丰德, 张解放. 装载于外势场中的玻色-爱因斯坦凝聚N-孤子间的相互作用. 物理学报, doi: 10.7498/aps.57.2658
    [19] 刘泽专, 杨志安. 噪声对双势阱玻色-爱因斯坦凝聚体系自俘获现象的影响. 物理学报, doi: 10.7498/aps.56.1245
    [20] 王冠芳, 傅立斌, 赵 鸿, 刘 杰. 双势阱玻色-爱因斯坦凝聚体系的自俘获现象及其周期调制效应. 物理学报, doi: 10.7498/aps.54.5003
计量
  • 文章访问数:  27
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-13

/

返回文章
返回