搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于随机动态掩模调制的幂律光场量子统计特性

郭晓丽 张丽 张蕾 张伟 赵益颉 郭龑强 张明江

引用本文:
Citation:

基于随机动态掩模调制的幂律光场量子统计特性

郭晓丽, 张丽, 张蕾, 张伟, 赵益颉, 郭龑强, 张明江

Quantum statistics of power-law light field based on random dynamic mask modulation

Guo Xiaoli, Zhang Li, Zhang Lei, Zhang Wei, Zhao Yijie, Guo Yanqiang, Zhang Mingjiang
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 光场的相干度在单光子成像中直接关系着成像信噪比与对比度,但现有成像光场相干度被限制在热噪声极限(g(2)(0)≤ 2)以下.本文提出了基于随机动态掩模调制增强光场二阶相干度的方法,并利用高分辨单光子探测阵列(SPDA)实现了对强关联、幂律光子统计特性光场的测量,进而验证了高阶相干度对成像质量的提升效果.实验表明在单像素平均光子数在10-2~102范围内,可实现幂律光子分布光场制备;在随机动态掩模调制下最大二阶相干度g(2)(0)=98.67 ,在哈达玛掩模调制下最大g(2)(0)=47.29 ,相干度提升幅度随曝光时间与调制频率可调.基于动态掩模最强相干度在5 μs曝光时间、单像素平均光子数0.026,仅需20帧进行高分辨400×400单光子二阶关联成像即可实现图像质量显著提升,峰值信噪比(PSNR)由8.05 dB增至29.03 dB,提高20.98 dB;结构相似度(SSIM)从0.08优化至0.92,增加了0.84;对比度由0.99显著增至74.96,清晰度由0.18增至34.19.该研究显著提升光场二阶相干度并超越热噪声极限,同时在单像素光子数远小于1、μs级快速曝光条件下实现单光子成像性能提升,为光场高阶相干度调控与低光子关联成像提供支撑.
    The quantum statistical properties of optical fields are core parameters that characterize the intrinsic physical properties of light sources, among which the second-order degree of coherence g(2)(0) serves as a key criterion for distinguishing between different types of light such as thermal light and coherent light, and thus holds significant theoretical and practical value. The quantum correlation characteristics inherent in these properties provide crucial physical support for advanced fields including quantum spectroscopy and quantum imaging. Particularly in correlation imaging, this technique exhibits irreplaceable potential for complex scene detection, owing to its strong resistance to scattering interference and exceptional capability for high-resolution imaging under weak-light conditions. However, existing technologies are still constrained by several critical limitations, including the limited stability of sources with a high degree of coherence, insufficient manipulation speed and control over light intensity, a lack of synergy between coherent control and mode customization, poor adaptability to low-light conditions, and lagging capabilities in the analysis of high-order coherence control.
    In response to the aforementioned issues, this study employs a Single-Photon Detection Array (SPDA) as the core detection device and proposes two schemes for enhancing the second-order coherence of a light field: an innovative approach based on random dynamic mask modulation and a comparative scheme using a Hadamard mask. By spatially modulating a coherent light field with an initial second-order coherence of 1, a light beam exhibiting both strong correlations and power-law statistical properties is successfully generated. Throughout the investigation, the photon statistical distribution and second-order coherence characteristics of the modulated light were systematically examined, with emphasis placed on analyzing the influence of key parameters such as exposure time and mask modulation frequency, while the enhancement effect of this modulation technique on single-photon correlation imaging performance was also experimentally validated.
    Experimental results demonstrate that the proposed scheme achieves significant effectiveness in both light field manipulation and imaging optimization. In terms of photon statistical property control, the proposed method enables efficient manipulation of light fields with average photon numbers ranging from 10-2 to 102. The photon number statistics of the modulated light field strictly adhere to a discrete power-law distribution, and its distribution curve exhibits a distinct linear relationship within a specific interval in double logarithmic coordinates. This finding provides critical support for the quantitative analysis of quantum statistical properties in highly coherent light fields. Regarding the enhancement of second-order coherence and imaging performance optimization, under short exposure conditions (5 μs), the random dynamic mask can elevate the second-order coherence of the initial coherent light field to 98.6667, with an average photon number per pixel of only 0.0076, while the Hadamard mask can increase it to 47.2899, corresponding to an average photon number per pixel of 0.0137. Further experimental validation confirms that the g(2) correlation imaging scheme based on the second-order coherence significantly outperforms the traditional frame stacking approach in all performance metrics. With the proposed scheme, only 20 frames are required to achieve substantial improvement in imaging quality. Specifically, compared to the traditional frame stacking method, loading the random dynamic mask results in the following performance enhancements: the peak signal-to-noise ratio (PSNR) increases by 20.98 dB, the structural similarity (SSIM) improves by 0.84, the contrast (CTRS) enhances by 73.97, and the sharpness (ACU) rises by 34.01 compared to the initial value.
    In summary, the modulation and imaging scheme proposed in this study can effectively optimize the performance of single-photon detection array under conditions of low photon flux and short exposure, providing a feasible approach for high-quality imaging in low-light scenarios. Meanwhile, experimental results fully demonstrate the core role of high-coherence light fields in promoting the performance of single-photon correlation imaging, which holds significant reference value for the practical application of quantum imaging technology.
  • [1]

    Abdalla M, Khalil E, Obada A, Perina J, Krepelka J 2015 Eur. Phys. J. Plus 130 227

    [2]

    Alpert M 2022 Front. Phys. 10 3389

    [3]

    Hsu L 2025 Annalen Phys. 537 e00049

    [4]

    Bao Y S, Wang B C, Tian C Y, Li Z Y 2025 Chin. Phys. B 34 074214

    [5]

    Lee Y S, Chen T Y, Chen Y J, Kan W H, Liu X W, Shi J W 2024 Photonics 11 724

    [6]

    Shan Y G, Fan-Yuan G J, Wang S, Chen W, He D Y, Yin Z Q, Guo G C, Han Z F 2021 Phys. Rev. A 104 032406

    [7]

    Lan D D, Guo X M, Peng C S, Ji Y L, Liu X L, Li P, Guo Y Q 2017 Acta Phys. Sin. 66 120502 (in Chinese) [兰豆豆,郭晓敏,彭春生,姬玉林,刘香莲,李璞,郭龑强 2017 物理学报 66 120502]

    [8]

    George A, Bruhacs A, Aadhi A, Hayenga W, Ostic R, Whitby E, Kues M, Wang Z, Reimer C, Khajavikhan M, Morandotti R 2021 Laser Photonics Rev. 15 2000593

    [9]

    Huang S Y, Gao J, Ren Z C, Cheng Z M, Zhu W Z, Xue S T, Lou Y C, Liu Z F, Chen C, Zhu F, Yang L P, Wang X L, Wang H T 2024 Chin. Phys. Lett. 41 074205

    [10]

    Guo Y Q, Hu Z N, Zhang J C, Zhu C Y, Guo X M 2023 Appl. Phys. Lett. 123 051101

    [11]

    Närhi M, Turunen J, Friberg A, Genty G 2016 Phys. Rev. Lett. 116 243901

    [12]

    Sun S, Liu W T, Gu J H, Lin H Z, Jiang L, Xu Y K, Chen P X 2019 Opt. Lett. 44 5993-5996

    [13]

    Guo Y Q, Wang L J, Wang Y, Fang X, Zhao T, Guo X M, Zhang T C 2020 J. Opt. 22 095202

    [14]

    Ye Z Y, Zhou C J, Ding C X, Zhao J L, Jiao S M, Wang H B, Xiong J 2023 Phys. Rev. Appl. 20 054012

    [15]

    Guo Y Q, Zhang H J, Guo X M, Zhang Y C, Zhang T C 2022 Opt. Express 30 8461

    [16]

    Fan B J, Zhao X Y, Zhang J Q, Sun Y C, Yang H Z, Guo L J, Zhou S J 2023 Laser Photonics Rev. 17 2200455

    [17]

    Han C X, Wu C, Hu M Q, Li J P, Chen H R X 2024 IEEE Trans. Geosci. Remote Sens. 62 4702621

    [18]

    Ming Q, Miao L J, Zhou Z Q, Song J J, Dong Y P, Yang X 2023 ISPRS J. Photogramm. Remote Sens. 196 241

    [19]

    Huang S Y, Gao J, Ren Z C, Cheng Z M, Zhu W Z, Xue S T, Lou Y C, Liu Z F, Chen C, Zhu F, Yang L P, Wang X L, Wang H T 2024 Chin. Phys. Lett. 41 074205

    [20]

    Cui D Z, Yi X X, Yang L P 2023 Adv Quantum Technol. 6 2300037

    [21]

    Kaur M, Singh M 2021 Sci. Rep. 11 23636

    [22]

    Unternährer M, Bessire B, Gasparini L, Perenzoni M, Stefanov A 2018 Optica 5 1150

    [23]

    Zhang Z J, Guo Y Q, Guo X L, Zhang L, Song K W, Zhang M J 2025 Acta Phys. Sin. 74 154201 (in Chinese) [张智杰, 郭龑强, 郭晓丽, 张丽, 宋铠炜, 张明江 2025 物理学报 74 154201]

    [24]

    Song K, Bian Y X, Wang D, Li R R, Wu K, Liu H R, Qin C B, Hu J Y, Xiao L T 2025 Laser Photonics Rev. 19 2401397

    [25]

    Gong W L, Zhao C Q, Yu H, Chen M L, Xu W D, Han S S 2016 Sci. Rep. 6 26133

    [26]

    Yan Q S, Yang K Z, Hu T, Chen G G, Dai KX, Wu P, Ren W Q, Zhang Y N 2025 IEEE Trans. Circuits Syst. Video Technol. 35 1409

    [27]

    Wu H, Hu B, Chen L, Peng F, Wang Z A, Genty G, Liang H K 2024 Light Sci. Appl. 13 124

    [28]

    Fan Q B, Xu W Z, Hu X M, Zhu W Q, Yue T, Yan F, Lin P C, Chen L, Song J Y, Lezec H J, Agrawal A, Lu Y Q, Xu T 2023 Nat. Commun. 13 2130

    [29]

    Liang G X, Li C H, Zhao J, Fu Y, Yu Z X, Zheng Z H, Su Z H, Fan P, Zhang X H, Luo J T, Ding L M, Chen S 2023 SusMat. 3 682

    [30]

    Wu S X, Hu J Y, Ge J Q, Fan Y S, Li Z X, Yang L, Song K, Tian J Z, Qiao Z X, Feng G S, Liang X L, Yang C G, Chen R Y, Qin C B, Zhang G F, Xiao L T, Jia S T 2025 Light Sci. Appl. 14 244

    [31]

    Leon C C, Rosławska A, Grewal A, Gunnarsson O, Kuhnke K, Kern K Sci. Adv 5 4986

    [32]

    HANBURY BROWN R, TWISS R Q 1956 Nature. 178 1046

    [33]

    Martienssen W, Spiller E 1964 Am. J. Phys 32 919

    [34]

    Bennink R S, Bentley S J, Boyd R W 2002 Phys. Rev. Lett. 89 113601

    [35]

    Chen X H, Liu Q, Luo K H, Wu L A 2009 Opt. Lett. 34 695

    [36]

    Wang F, Wang C L, Chen M L, Gong W L, Zhang Y, Han S S, Situ G H 2022 Light Sci. Appl. 11 1

    [37]

    Zhou Y, Li F L, Bai B, Chen H, Liu J B, Xu Z, Zheng H B 2017 Phys. Rev. A 95 053809

    [38]

    Liu J B, Zhuang R, Zhang X X, Wei C Q, Zheng H B, Zhou Y, Chen H, He Y C, Xu Z 2021 Opt. Commun. 498 127264

    [39]

    Straka I, Ježek M 2021 Phys. Rev. A 103 023717

    [40]

    Hong M Y, Miller A, León-Montiel R de J, You C L, Magaña-Loaiza O S 2023 Laser Photonics Rev. 17 2300117

  • [1] 张智杰, 郭龑强, 郭晓丽, 张丽, 宋铠炜, 张明江. 基于超分辨深度学习单光子阵列超快曝光增强成像. 物理学报, doi: 10.7498/aps.74.20250432
    [2] 常宸, 孙帅, 杜隆坤, 聂镇武, 何林贵, 张翼, 陈鹏, 鲍可, 刘伟涛. 室外环境中的关联成像研究进展. 物理学报, doi: 10.7498/aps.72.20231245
    [3] 张笑, 吕嘉煜, 管焰秋, 李慧, 王锡明, 张蜡宝, 王昊, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 吴培亨. 超大面积超导纳米线阵列单光子探测器设计与制备. 物理学报, doi: 10.7498/aps.71.20221569
    [4] 孙艳玲, 曹瑞, 王子豪, 廖家莉, 刘其鑫, 冯俊波, 吴蓓蓓. 基于光学相控阵双周期光场的关联成像. 物理学报, doi: 10.7498/aps.70.20211208
    [5] 张海燕, 汪琳莉, 吴琛怡, 王煜蓉, 杨雷, 潘海峰, 刘巧莉, 郭霞, 汤凯, 张忠萍, 吴光. 高时间稳定性的雪崩光电二极管单光子探测器. 物理学报, doi: 10.7498/aps.69.20191875
    [6] 李明飞, 阎璐, 杨然, 寇军, 刘院省. 日光强度涨落自关联消湍流成像. 物理学报, doi: 10.7498/aps.68.20182181
    [7] 兰豆豆, 郭晓敏, 彭春生, 姬玉林, 刘香莲, 李璞, 郭龑强. 混沌光场光子统计分布及二阶相干度的分析与测量. 物理学报, doi: 10.7498/aps.66.120502
    [8] 李斌, 张国峰, 景明勇, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂. 利用单分子光学探针测量幂律分布的聚合物动力学. 物理学报, doi: 10.7498/aps.65.218201
    [9] 范洪义, 吴泽. 二项-负二项组合光场态的光子统计性质及其在量子扩散通道中的生成. 物理学报, doi: 10.7498/aps.64.080303
    [10] 姚银萍, 万仁刚, 薛玉郎, 张世伟, 张同意. 基于统计光学的正负热光非定域成像. 物理学报, doi: 10.7498/aps.62.154201
    [11] 任春年, 史鹏, 刘凯, 李文东, 赵洁, 顾永建. 初态对光波导阵列中连续量子行走影响的研究. 物理学报, doi: 10.7498/aps.62.090301
    [12] 白旭, 李永强, 赵生妹. 基于压缩感知的差分关联成像方案研究. 物理学报, doi: 10.7498/aps.62.044209
    [13] 张二峰, 戴宏毅. 光的偏振对热光关联成像的影响. 物理学报, doi: 10.7498/aps.60.064209
    [14] 赵冬梅, 李志刚, 郭龑强, 李刚, 王军民, 张天才. 弱抽运下光学参量过程中压缩真空场的光子统计性质. 物理学报, doi: 10.7498/aps.59.6231
    [15] 张兴华, 赵宝升, 缪震华, 朱香平, 刘永安, 邹 玮. 紫外单光子成像系统的研究. 物理学报, doi: 10.7498/aps.57.4238
    [16] 孙志斌, 马海强, 雷 鸣, 杨捍东, 吴令安, 翟光杰, 冯 稷. 近红外单光子探测器. 物理学报, doi: 10.7498/aps.56.5790
    [17] 甘琛利, 张彦鹏, 余孝军, 聂志强, 李 岭, 宋建平, 葛 浩, 姜 彤, 张相臣, 卢克清. 基于双光子不对称色锁二阶随机关联的阿秒极化拍研究. 物理学报, doi: 10.7498/aps.56.2670
    [18] 李 园, 李 刚, 张玉驰, 王晓勇, 王军民, 张天才. 计数率和分辨时间对光场统计性质测量的影响——单探测器直接测量的实验分析. 物理学报, doi: 10.7498/aps.55.5779
    [19] 甘琛利, 张彦鹏, 冯 宇, 余孝军, 汪 杰, 李创社, 宋建平, 卢克清, 侯 洵. 阿秒极化拍的V型三能级对称二阶相干理论. 物理学报, doi: 10.7498/aps.54.726
    [20] 詹达三. 完全相干场的二阶关联函数的分解性质. 物理学报, doi: 10.7498/aps.28.117
计量
  • 文章访问数:  49
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-14

/

返回文章
返回