搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

质子传导增强的CMC-Na/MOF-801/PPY用于高灵敏、快响应的湿度传感

吴可 何青芯 刘海顺

引用本文:
Citation:

质子传导增强的CMC-Na/MOF-801/PPY用于高灵敏、快响应的湿度传感

吴可, 何青芯, 刘海顺

Proton conduction enhanced CMC-Na/MOF-801/PPY for highly sensitive and fast response humidity sensing

KE Wu, QINGXIN He, HAISHUN Liu
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 高性能湿度传感器由于在半导体制造、智慧农业、仓储、健康监测等领域具有重要应用而受到广泛关注,要求传感器具有宽监测范围、高响应值、小湿滞、快响应恢复和优异的长期稳定性。本文通过原位聚合法构筑得到了一种质子传导增强的CMC-Na/MOF-801/PPY湿敏材料和阻抗型湿度传感器。由于存在连续的氢键网络,湿敏材料的质子电导率和阻抗对湿度存在紧密依赖性,相对湿度( Relative humidity(%),简记为% RH)为85%时湿度传感器的响应值达到1.24×105,并同时表现出小湿滞( 1.9% RH)和快的响应恢复特性( 2.8 s和1.2 s)。作为概念验证,本研究评估了传感器在无接触式传感中的应用潜力。研究表明,增强的质子传导机制是传感器表现出高响应值、小湿滞和快响应恢复等湿敏特性的主要原因,这对获得高性能湿度传感器具有重要参考意义。
    High-performance humidity sensors have received widespread attention for their wide use in healthcare, archaeology, electronic device manufacturing, etc., thus developing humidity sensors with wide sensing range, high response, narrow humidity hysteresis, fast response/recovery, and excellent stability are urgently needed. Humidity-sensitive materials are the core of humidity sensors. To obtain high-performance humidity sensors, humidity-sensitive materials should have high hydrophilicity, conductivity, and stability. Metal organic frameworks (MOFs) are promising humidity-sensitive materials due to their special characteristics, but often limited by the poor conductivity and hydrophilicity. Herein, a proton conduction enhanced CMC-Na/MOF-801/PPY (CMP) humidity-sensitive material was prepared through in-situ polymerization, and the corresponding humidity sensor was fabricated via drop-casting. The structure, functional groups, specific surface area, and element distribution of the CMP material were investigated by powder X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), N2 sorption isotherm, transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). The abundant hydrophilic groups and continuous hydrogen bond network lead to tight dependence of the proton conductivity and impedance of the sensing material on the humidity. The results show that the optimized CMP sensor is highly sensitive to humidity change with high response of 516.7 at 43% RH and 1.24×105 at 85% RH, narrow hysteresis of 1.9% RH, and short response/recovery time of 2.8 s and 1.2 s in the humidity range of 7–85% RH. Compared to reported MOFs-based humidity sensors, the CMP sensor exhibits unique technical characteristics. Further, the humidity sensing mechanism of the CMP sensor was investigated through a combination of material characterization, water adsorption kinetics, carrier concentration, complex impedance spectroscopy (CIS) plot, and equivalent circuit (EC). As proof of concept, by monitoring the humidity on the finger surface, we evaluated the potential applications of the CMP sensor in noncontact sensing. Moreover, a palmar hyperhidrosis diagnosis system based on the CMP sensor was assembled, realizing quick, intuitive, and accurate diagnosis the severity of palmar hyperhidrosis. It is believed that this work provides a reasonable strategy for constructing high-performance humidity sensors.
  • [1]

    Wu K 2023 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [吴可 2023 博士学位论文(长春:吉林大学)]

    [2]

    Xu S Y, Wu Y W, Zhou Y, Yin X Y, Gan L, Li Y J, Liu M Y, Song H J, Wang J B, Zhong X L 2022 Acta Phys. Sin. 71 020701 (in Chinese) [许诗瑶,吴祎玮,周燕,尹向阳,甘梨,李雅鹃,刘铭彧,宋宏甲,王金斌,钟向丽 2022 物理学报 71 020701]

    [3]

    Wu K, Cui Y Y, Song Y P, Ma Z Y, Wang J, Li J, Fei T, Zhang T 2023 Adv. Funct. Mater. 33 2300239

    [4]

    Ma Z Y, Yu Y L, Wu K, Song Y P, Liu S, Yang X, Fei T, Zhang T 2023 Chem. Eng. J. 471 144788

    [5]

    Li C C, Liu J, Peng H L, Sui Y, Song J, Liu Y, Huang W, Chen X W, Shen J H, Ling Y, Huang C Y, Hong Y W, Huang W G 2022 ACS Nano 16 1511

    [6]

    Wu K, Fei T, Zhang T 2022 Nanomaterials 12 4208

    [7]

    Jiang Y W, Duan Z H, Fan Z X, Yao P, Yuan Z, Jiang Y D, Cao Y, Tai H L 2023 Sens. Actuators B 380 133396

    [8]

    Xu Z W, Zhang F Y, Qi P J, Gao B R, Zhang T 2022 IEEE Electron Device Lett. 43 611

    [9]

    Chen Y J, Zhang C Y, Xie J Y, Li H J, Dai W J, Deng Q L, Wang S 2020 Anal. Chim. Acta 1109 114

    [10]

    Wu K, Yang W J, Guo L L, Yang Z M, Jiao M Z 2024 Small 20 2404160

    [11]

    Guan X, Yu Y L, Wu K, Hou Z N, Ma Z Y, Miao X Y, Fei T, Zhang T 2022 IEEE Sens. J. 22 12570

    [12]

    Yu Y L, Zhang W, Song Y P, Cui Y Y, Liu S, Liang X S, Fei T, Zhang T 2025 Sens. Actuators B 426 137091

    [13]

    Manyimo T L, Ren J W, Wang H, Peng S J 2025 Coord. Chem. Rev. 537 216717

    [14]

    Yang L F, Qian S H, Wang X B, Cui X L, Chen B L, Xing H B 2020 Chem. Soc. Rev. 49 5359

    [15]

    Bindra A K, Wang D D, Zhao Y L 2023 Adv. Mater. 35 2300700

    [16]

    Wu K, Miao X Y, Zhao H R, Liu S, Fei T, Zhang T 2023 ACS Appl. Nano Mater. 6 9050

    [17]

    Zhang J, Bai H J, Ren Q, Luo H B, Ren X M, Tian Z F, Lu S F 2018 ACS Appl. Mater. Interfaces 10 28656

    [18]

    Zhang Y, Xiong J, Chen C, Li Q Z, Liu J J, Zhang Z C 2020 J. Alloys Compd. 818 152854

    [19]

    Wu K, Miao X Y, Yu Y L, Ma Z Y, Hou Z N, Fei T, Zhang T 2023 IEEE Sens. J. 23 1867

    [20]

    Huang C, Chen J H, Zhang Y G, Jiang C Y, Wang Y J, Qi J X, Yang H D, Gao K Z, Jiang M, Liu F H 2025 Carbohyd. Polym. 358 123507

    [21]

    Wu J H, Cao D B, Lu Y, Yu X, Yang Y H, Zhao X, Xu Y, Liu X M, Lu G Y 2025 J. Colloid Interface Sci. 686 547

    [22]

    Guan X, Hou Z N, Wu K, Zhao H R, Liu S, Fei T, Zhang T 2021 Sens. Actuators B 339 129879

    [23]

    Wu K, He Q X 2025 Sens. Actuators B 425 136992

    [24]

    Kim H, Yang S, Rao S R, Narayanan S, Kapustin E A, Furukawa H, Umans A S, Yaghi O M, Wang E N 2017 Science 356 430

    [25]

    Wu K, Miao X Y, Ma Z Y, Hou Z N, Yu Y L, Guan X, Zhao H R, Liu S, Fei T, Zhang T 2022 IEEE Electron Device Lett. 43 1969

    [26]

    Wang Z Y, Zhang A J, Zhu M Y, Lin C Z, Guo Z Y, Song Y N, Li S S, Feng J T, Li M T, Yan W 2025 Sep. Purif. Technol. 354 129122

    [27]

    Yang C R, Wu H, Yun J, Jin J S, Meng H, Caro J, Mi J G 2023 Adv. Mater. 35 2210235

    [28]

    Du Y, Shen Y R, Zeng X Y, Chen M J, Zeng X K, Huang X B, Xie Q J 2025 Food Chem. 489 144943

    [29]

    Gowri S, Aarthi J, Selvaraju K, Kirubavathi K, Hussain S 2025 Mater. Lett. 394 138622

    [30]

    Song Y P, Ma Z Y, Cui Y Y, Miao X Y, Yu Y L, Wu K, Zhao H R, Liu S, Fei T, Zhang T 2024 IEEE Electron Device Lett. 45 685

    [31]

    Wu K, Guo L L, Wang W, Yang Z M, Liu H S 2024 Sens. Actuators B 417 136174

    [32]

    Cui Z P, Zhang L X, Xu H, Yin Y Y, Tang B, Bie L J 2022 Appl. Surf. Sci. 587 152892

    [33]

    Wang H, Ma Z H, Jia Z, Xu P C, Xue Z G, Xu J Q 2025 ACS Sens. 10 1249

    [34]

    Zhang Y, Zhang W X, Li Q Z, Chen C, Zhang Z C 2020 Sens. Actuators B 324 128733

    [35]

    Deng W H, Li Q H, Chen J, Wang C Z, Fu Z H, Ye X L, Wang G E, Xu G 2023 Angew. Chem. Int. Ed. 62 e2023059

    [36]

    Wu K, Jiao M Z, Yang M M, Qiao Y T, He Q X, Fei T, Yang Z M 2025 Small Methods 9 e00771

  • [1] 程学明, 崔文宇, 祝鲁平, 王霞, 刘宗明, 曹丙强. 具有快响应速度和低暗电流的垂直MSM型CsPbBr3薄膜光电探测器. 物理学报, doi: 10.7498/aps.73.20241075
    [2] 葛一璇, 于婷婷, 梁文杰. 原位合成方法制备超灵敏和高特异性的微型氢气传感器. 物理学报, doi: 10.7498/aps.73.20231265
    [3] 刘荣肇, 樊振军, 王浩成, 宁昊明, 米振宇, 刘广耀, 宋小会. 锌离子掺杂钴基金属有机材料[(CH3)2NH2]Co1–xZnx(HCOO)3中的低温反常磁现象. 物理学报, doi: 10.7498/aps.72.20221761
    [4] 赖伟恩, 邬宗冬, 李力奇, 刘根, 方彦俊. 基于MAPbI3/Graphene/Si复合结构的高灵敏宽带太赫兹调制器. 物理学报, doi: 10.7498/aps.72.20230527
    [5] 许诗瑶, 吴祎玮, 周燕, 尹向阳, 甘梨, 李雅鹃, 刘铭彧, 宋宏甲, 王金斌, 钟向丽. 快速响应恢复的PI-SiO2/NiI2比色湿度传感器. 物理学报, doi: 10.7498/aps.71.20211376
    [6] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性研究. 物理学报, doi: 10.7498/aps.71.20220186
    [7] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性. 物理学报, doi: 10.7498/aps.70.20220186
    [8] 张翔宇, 刘会刚, 康明, 刘波, 刘海涛. 金属-介质-金属多层结构可调谐Fabry-Perot共振及高灵敏折射率传感. 物理学报, doi: 10.7498/aps.70.20202058
    [9] 许诗瑶, 钟向丽, 吴祎玮. 快速响应恢复的 PI-SiO2/NiI2比色湿度传感器. 物理学报, doi: 10.7498/aps.70.20211376
    [10] 程君妮. 基于光纤锥和纤芯失配的Mach-Zehnder干涉湿度传感器. 物理学报, doi: 10.7498/aps.67.20171677
    [11] 刘丽娟, 孔晓波, 刘永刚, 宣丽. 基于液晶/聚合物光栅的高转化效率有机半导体激光器. 物理学报, doi: 10.7498/aps.66.244204
    [12] 池浪, 费洪涛, 王腾, 易建鹏, 方月婷, 夏瑞东. 基于有机半导体激光材料的高灵敏度溶液检测传感器件. 物理学报, doi: 10.7498/aps.65.064202
    [13] 冒晓莉, 肖韶荣, 刘清惓, 李敏, 张加宏. 探空湿度测量太阳辐射误差修正流体动力学研究. 物理学报, doi: 10.7498/aps.63.144701
    [14] 邓芳明, 何怡刚, 佐磊, 李兵, 吴可汗. 基于无源超高频射频识别标签的湿度传感器设计. 物理学报, doi: 10.7498/aps.63.188402
    [15] 娄淑琴, 王鑫, 尹国路, 韩博琳. 基于侧漏型光子晶体光纤高灵敏度宽线性范围弯曲传感器的研究. 物理学报, doi: 10.7498/aps.62.194209
    [16] 杨珅, 荣强周, 孙浩, 张菁, 梁磊, 徐琴芳, 詹苏昌, 杜彦英, 冯定一, 乔学光, 忽满利. 基于Michelson干涉仪的高灵敏度光纤高温探针传感器. 物理学报, doi: 10.7498/aps.62.084218
    [17] 郑晶晶, 简水生, 马林, 柏云龙, 裴丽, 宁提纲, 闻映红. 具有大范围高分辨率线性响应特性的超短无芯光纤溶液折射率传感器. 物理学报, doi: 10.7498/aps.62.150703
    [18] 龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令. 光纤法布里-珀罗复合结构折射率传感器的灵敏度分析. 物理学报, doi: 10.7498/aps.60.064202
    [19] 黄覃, 冷逢春, 梁文耀, 董建文, 汪河洲. 光子晶体的相位特性在高灵敏温度传感器中的应用. 物理学报, doi: 10.7498/aps.59.4014
    [20] 朱 涛, 饶云江, 莫秋菊. 基于超长周期光纤光栅的高灵敏度扭曲传感器. 物理学报, doi: 10.7498/aps.55.249
计量
  • 文章访问数:  11
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-27

/

返回文章
返回