搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于滑槽-转轴间歇接触结构的高耐久性摩擦纳米发电机

金哲林 曹杰 雷锐 尤靖渊 米乐天 居桂章 高阳 曲召奇 程广贵

引用本文:
Citation:

基于滑槽-转轴间歇接触结构的高耐久性摩擦纳米发电机

金哲林, 曹杰, 雷锐, 尤靖渊, 米乐天, 居桂章, 高阳, 曲召奇, 程广贵

Highly Durable Triboelectric Nanogenerator Based on the Chute-Rotating Shaft Intermittent Contact Structure

Jin Zhelin, Cao Jie, Lei Rui, You Jingyuan, Mi Letian, Ju Guizhang, Gao Yang, Qu Zhaoqi, Cheng Guanggui
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 摩擦纳米发电机(TENG)问世以来在自供能传感和环境能量收集领域展现出巨大潜力,但其长期运行的可靠性受制于摩擦层的磨损问题。本文提出一种基于滑槽-转轴间歇接触结构的摩擦纳米发电机(SR-TENG),通过在转动轴上制备特定的滑槽结构,使旋转盘沿滑槽作周期性的接触分离运动,从而将电极层与摩擦层之间由持续接触变为周期性短暂接触,这一滑槽-转轴结构有效减少了90%的接触摩擦时间。SR-TENG在200rpm转速下可稳定输出40 V的电压,经28.8万次循环后表面微结构仍存在且性能保持超过95%。作为自供能转速传感器,SR-TENG展现出优异的线性响应特性和快速动态响应。本研究不仅为解决TENG在长期运行中的磨损问题提供了有效结构设计策略,也为构建长效稳定的自供能传感系统开辟了新路径,在工业状态监测、智能物联网设备等领域具有重要的应用价值。
    Triboelectric nanogenerators (TENGs) have emerged as a transformative technology for self-powered sensing and harvesting ubiquitous ambient mechanical energy. However, a critical bottleneck hindering their long-term reliability is the inevitable material wear and performance degradation caused by sustained friction between contacting layers. This work presents a slotted rotor-based TENG (SRTENG) that fundamentally addresses this wear challenge through an intermittent contact mechanism. The core innovation lies in a unique structural comprising a rotating shaft with precisely machined axial slots and a rotor disk equipped with a spring-loaded pin. As the shaft rotates, the pin engages with the helical slots, converting the uniform rotary motion into a controlled, periodic vertical reciprocating motion of the entire rotor assembly. This mechanical transformation shifts the operational mode from continuous sliding contact to periodic contactseparation cycles between the rotor-mounted electrode and the stationary bottom triboelectric layer, drastically minimizing direct friction time. Systematic experimental characterization demonstrates the efficacy of this design. Quantitative analysis confirms a 90% reduction in contact friction duration per cycle compared to standard rotary TENGs. The SR-TENG consistently delivers a stable opencircuit voltage of 40 V at 200 rpm. More critically, the device exhibits outstanding durability. After a rigorous accelerated test spanning 288,000 continuous cycles, the SR-TENG retains over 95% of its initial electrical output. Microscopic inspection via scanning electron microscopy reveals that the delicate microstructures on the triboelectric layer surface remain intact with no observable abrasion, providing direct physical evidence of the wear-mitigation effect. Beyond energy harvesting, the SR-TENG functions as a self-powered rotational speed sensor. Its output signal frequency shows an excellent linear relationship with rotational speed, and the device boasts a rapid dynamic response time of less than 10 ms, enabling precise real-time monitoring. In conclusion, this study proposes a highly effective and mechanically elegant structural strategy to solve the wear problem in rotary TENGs. The SR-TENG design not only ensures exceptional long-term operational stability and performance retention but also demonstrates versatile functionality as a sensor. This work provides a viable pathway for developing durable self-powered systems, with significant application potential in industrial equipment condition monitoring, distributed IoT sensor networks, and smart infrastructure.
  • [1]

    Ouyang Q, Rong Y, Wang B, Ahmad W, Liu S, Chen Q 2024 Food Chem. 430 136981

    [2]

    Zhang Z, Zhang Y, Wang C, Liu X, El-Seedi H R, Gómez P L, Alzamora S M, Zou X, Guo Z 2024 Food Hydrocolloids 157 110475

    [3]

    Guo Z, Zhang Y, Xiao H, Jayan H, Majeed U, Ashiagbor K, Jiang S, Zou X 2025 Food Control 172 111174

    [4]

    Lu X, Yan Y, Wei J, Zhang X, Wang C, Li H, Yu Y, Li S, Zhang B, Yang Z, Cheng X, Cheng T 2025 Adv. Funct. Mater. n/a e09144

    [5]

    Cao J, Lin Y, Fu X, Wang Z, Liu G, Zhang Z, Qin Y, Zhou H, Dong S, Cheng G, Zhang C, Ding J 2023 Nano Energy 107 108150

    [6]

    Pang Y, Zhu X, Yu Y, Liu S, Chen Y, Feng Y 2022 Nano Res. 15 5450

    [7]

    Li W, Luo F, Liu Y, Zou Y, Mo L, He Q, Lin P J, Xu Q, Liu A, Zhang C, Cheng J, Cheng L, Ji L 2025 Adv. Mater. 37 2419059

    [8]

    Zhu H, Jin Z, Bai H, Cao J, Dong X, Zhong Y, Dai S, Cheng G, Yuan N, Ding J 2023 Measurement 207 112402

    [9]

    Baburaj A, Banerjee S, Aliyana A K, Shee C, Banakar M, Bairagi S, Naveen Kumar S K, Ali S W, Stylios G K 2024 Nano Energy 127 109785

    [10]

    Cao J, Dong Z, Zhang Z, Gong L, Gao Y, Dai Y, Liu G, Feng Y, Jin Z, Luan R, Wang Z, Dong S, Cheng G, Zhang C, Ding J 2024 Adv. Energy Mater 14 2400659

    [11]

    Yun L, Li L, Zhang J, Guan J 2025 Int. J. Prod. Econ. 281 109517

    [12]

    Baburaj A, Jayadevan S, Aliyana A K, Sk N K, Stylios G K 2025 Adv. Sci. 12 2417414

    [13]

    Klotz J, Nayar S K 2025 Sol. Energy 300 113833

    [14]

    Shi Y, Li H, Yang L, Wang Y, Sun Z, Zhang C, Fu X, Niu Y, Han C, Xie F 2025 Small Methods 9 2401189

    [15]

    Jiang Z, Fu X, Qi Y, Zeng J, Cao J, Dong Z, Gao Z, Wang Z, Gong L, Liu G, He Z, Cao X, Zhang C 2025 Int. J. Mech. Sci. 304 110686

    [16]

    Peng W, Ni Q, Zhu R, Fu X, Zhu X, Zhang C, Liao L 2024 Nano Energy 131 110272

    [17]

    Fan F R, Tian Z Q, Lin Wang Z 2012 Nano Energy 1 328

    [18]

    Shi J, Zhao Z, Gao Y, Yuan W, Ma W, Zhang J, Zhang B, Liu D, Wang J 2024 Small 20 2311930

    [19]

    Gao Y, Liu J, Zhou L, He L, Liu D, Yang P, Jin B, Wang Z L, Wang J 2024 Energy Environ. Sci. 17 8734

    [20]

    Zou H, Guo L, Xue H, Zhang Y, Shen X, Liu X, Wang P, He X, Dai G, Jiang P, Zheng H, Zhang B, Xu C, Wang Z L 2020 Nat. Commun. 11 2093

    [21]

    Zou H, Zhang Y, Guo L, Wang P, He X, Dai G, Zheng H, Chen C, Wang A C, Xu C, Wang Z L 2019 Nat. Commun. 10 1427

    [22]

    Feng L, Wu Y, Qu J, Li Z, Wang J, Menon C 2026 Composites, Part B 309 113081

    [23]

    Nazarian-Samani M, A. Alidokht S, Therien-Aubin H, Zhang L 2025 Appl. Energy 391 125918

    [24]

    Wu Y S, Liu Q, Cao J, Li K, Cheng G G, Zhang Z Q, Ding J N, Jiang S Y 2019 Acta Phys. Sinica 68 190201 (in Chinese) [吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇 2019 物理学报 068 019]

    [25]

    Cao J, Gu W G, Qu Z Q, Zhong Y, Cheng G G, Zhang Z Q 2020 Acta Phys. Sinica 69 230201 (in Chinese) [曹杰, 顾伟光, 曲召奇, 仲艳, 程广贵, 张忠强 2020 物理学报 069 023]

    [26]

    Lin L, Xie Y, Niu S, Wang S, Yang P K, Wang Z L 2015 ACS Nano 9 922

    [27]

    Wang S, Lin L, Xie Y, Jing Q, Niu S, Wang Z L 2013 Nano Lett. 13 2226

    [28]

    Wang Z L 2015 Faraday Discuss. 176 447

    [29]

    Wu Q, Zhong Y, Chen R, Ling G, Wang X, Shen Y, Hao C 2024 Ind. Crops Prod. 222 119676

    [30]

    Chao Y, Pang J, Bai Y, Wu P, Luo J, He J, Jin Y, Li X, Xiong J, Li H, Zhu W 2020 Food Chem. 320 126666

    [31]

    Zhao B, Wang Y, Huang S, Tian T, Liao X, Wang W, Li Z 2025 Chem. Eng. J. 523 168505

    [32]

    Li M, Yi P, Li X, Li T, Li X, Zhang C, Wang Z, Zhang X, Wang A 2025 ACS Appl. Mater. Interfaces 17 58947

    [33]

    Wang Z L, Lin L, Chen J, Niu S M, Zi Y L 2017 Triboelectric Nanogenerator(Beijing:Science press) p107-109 (in Chinese) [王中林,林龙,陈俊, 牛思淼,訾云龙2017 摩擦纳米发电机(北京:科学出版社)第107-109页]

  • [1] 邓浩程, 李祎, 田双双, 张晓星, 肖淞. 面向高性能摩擦纳米发电机的电介质材料. 物理学报, doi: 10.7498/aps.73.20240150
    [2] 梁帅博, 袁涛, 邱扬, 张震, 妙亚宁, 韩竞峰, 刘秀童, 姚春丽. 钛酸钡介电调控提升纸基摩擦纳米发电机输出性能. 物理学报, doi: 10.7498/aps.71.20212022
    [3] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, doi: 10.7498/aps.71.20211632
    [4] 李毅伟, 雷佑铭, 杨勇歌. 随机激励下Frenkel-Kontorova模型的纳米摩擦现象. 物理学报, doi: 10.7498/aps.70.20201254
    [5] 王闯, 鲍容容, 潘曹峰. 基于纳米发电机的触觉传感在柔性可穿戴电子设备中的研究与应用. 物理学报, doi: 10.7498/aps.70.20202157
    [6] 陈康, 沈煜年. 软体机器人用多孔聚合物水凝胶的摩擦接触非线性行为. 物理学报, doi: 10.7498/aps.70.20202134
    [7] 申茂良, 张岩. 基于压电纳米发电机的柔性传感与能量存储器件. 物理学报, doi: 10.7498/aps.69.20200784
    [8] 丁亚飞, 陈翔宇. 基于摩擦纳米发电机的可穿戴能源器件. 物理学报, doi: 10.7498/aps.69.20200867
    [9] 曹杰, 顾伟光, 曲召奇, 仲艳, 程广贵, 张忠强. 基于变化静电场的非接触式摩擦纳米发电机设计与研究. 物理学报, doi: 10.7498/aps.69.20201052
    [10] 吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇. 收集振动能的摩擦纳米发电机设计与输出性能. 物理学报, doi: 10.7498/aps.68.20190806
    [11] 程广贵, 张伟, 方俊, 蒋诗宇, 丁建宁, Noshir S. Pesika, 张忠强, 郭立强, 王莹. 基于织构表面的摩擦静电发电机制备及其输出性能研究. 物理学报, doi: 10.7498/aps.65.060201
    [12] 杨益飞, 骆敏舟, 邢绍邦, 韩晓新, 朱熀秋. 永磁同步发电机混沌运动分析及最优输出反馈H∞控制. 物理学报, doi: 10.7498/aps.64.040504
    [13] 吴忠强, 杨阳, 徐纯华. 混沌状态下永磁同步发电机的故障诊断——LMI法研究. 物理学报, doi: 10.7498/aps.62.150507
    [14] 余洋, 米增强, 刘兴杰. 双馈风力发电机混沌运动分析及滑模控制混沌同步. 物理学报, doi: 10.7498/aps.60.070509
    [15] 吴淑花, 孙毅, 郝建红, 许海波. 耦合发电机系统的分岔和双参数特性. 物理学报, doi: 10.7498/aps.60.010507
    [16] 王兴元, 武相军. 变形耦合发电机系统中的混沌控制. 物理学报, doi: 10.7498/aps.55.5083
    [17] 王兴元, 武相军. 耦合发电机系统的自适应控制与同步. 物理学报, doi: 10.7498/aps.55.5077
    [18] 曹晓平, 蒋亦民. 浸润接触线的摩擦性质与固体表面张力的Wenzel行为. 物理学报, doi: 10.7498/aps.54.2202
    [19] 金建中. 用固体绝缘材料代替高压气体来绝缘静电发电机的建议. 物理学报, doi: 10.7498/aps.12.487
    [20] 陈茂康. 一种脈流发电机之初记. 物理学报, doi: 10.7498/aps.1.87
计量
  • 文章访问数:  42
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2026-01-06

/

返回文章
返回