搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电压幅值对大气压氩气介质阻挡放电模式影响的数值模拟

李雪辰 葛禹琦 杨晨曦 刘晓倩 任晨华 冉俊霞 苏彤 张雪雪 杨歆垚 贾鹏英

引用本文:
Citation:

电压幅值对大气压氩气介质阻挡放电模式影响的数值模拟

李雪辰, 葛禹琦, 杨晨曦, 刘晓倩, 任晨华, 冉俊霞, 苏彤, 张雪雪, 杨歆垚, 贾鹏英

Numerical simulation on atmospheric pressure argon dielectric barrier discharge mode influenced by applied voltage amplitude

Li Xuechen, Ge Yuqi, Yang Chenxi, Liu Xiaoqian, Ren Chenhua, Ran Junxia, Su Tong, Zhang Xuexue, Yang Xinyao, Jia Pengying
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 作为一种广受欢迎的低温等离子体源,介质阻挡放电(dielectric barrier discharge,DBD)因其广泛的应用前景而备受关注.为了探究不同放电模式的形成机制,本文采用二维轴对称流体模型对大气压氩气DBD的放电模式进行了数值模拟.结果表明,随着电压幅值(Va)增大,放电功率(Pdis)增大,DBD经历了从离散丝状模式、弥散模式、互补丝状模式到柱状模式的演变过程.外加电压与放电电流的波形图表明,无论在哪种放电模式下,正负放电半周期的电流波形都始终保持对称.当Va (及Pdis)较小时,放电电流在每半个周期内呈现单脉冲特性.随着Va (及Pdis)的增大,其演变为双脉冲、三脉冲乃至多脉冲特性.电子密度(ne)与电场(E)的时空演化揭示残余电子在放电模式中起关键作用.E主要由其轴向分量构成,其径向分量在弥散模式下仅会在电极边缘出现.在互补丝状模式中,强微放电(micro-discharges,MDs)与弱MDs的位置在连续的两个半周期内交替出现.在柱状模式中,强MD通道在连续的两个半周期会在固定的位置出现.此外,柱状模式中残余电子通道的直径大于丝状模式.
    As a popular low-temperature plasma source, dielectric barrier discharge (DBD) has drawn significant attention due to its extensive application field including surface modification, material synthesis, sterilization, etc. DBD has presented different modes with varying experimental conditions. In order to address the formation mechanism of the different modes, a two-dimensional axis-symmetric fluid model is employed to simulate the characteristics of DBD in atmospheric pressure argon. Results indicate that DBD undergoes a scenario from a discretely-filamentary mode, a diffuse mode, a complementarily-filamentary mode, to a columnar mode with increasing voltage amplitude (Va) or discharge power (Pdis). Waveforms of applied voltage and discharge current indicate that for every discharge mode, the discharge current waveforms are always symmetrical for positive and negative discharge half-cycles. The discharge current exhibits single-pulse characteristics per half-cycle with low Va (or Pdis), and turns to double-pulse, triple-pulse, or multi-pulse characteristics per half-cycle with increasing Va (or Pdis). Spatial-temporal evolutions of electron density and electric field reveal that residual electrons play an important role in the discharge mode. Electric field (E) is mainly composed of its axial component, and its radial component only appears at the edge of the electrode in the diffuse mode. In the complementarily-filamentary mode, the locations of the strong-MDs and those of the weak-MDs alternate in the consecutive half-cycles. The strong-MD channels are stationary at fixed locations in the consecutive half-cycles for the columnar mode. In addition, the diameter of residual electrons in the columnar mode is larger than that in the filamentary mode. Moreover, the generation rate of Ar* increases, while the energy efficiency of the discharge shrinks with increasing Va (or Pdis). These results are of great significance for the deep understanding of discharge mode and the improving of DBD performance.
  • [1]

    Li X C, Chu J D, Zhang Q, Zhang P P, Jia P Y, Geng J L 2016 Appl. Phys. Lett. 109 204102

    [2]

    Rad R H, Brüser V, Brandenburg R 2024 Plasma Sources Sci. Technol. 33 025027

    [3]

    Lu Y M, Ono R, A. Komuro 2024 Plasma Sources Sci. Technol. 33 04LT01

    [4]

    Nguyen-Smith R T, Böddecker A, Schücke L, Bibinov N, Korolov I, Zhang Q Z, Mussenbrock T, Awakowicz P, Schulze J 2022 Plasma Sources Sci. Technol. 31 035008

    [5]

    Galmiz O, Cimerman R, Pareek P, Janda M, Machala Z 2025 Plasma Sources Sci. Technol. 34 025011

    [6]

    Chen M, Dong X P, Wu K Y, Ran J X, Jia P Y, Wu J C, Li X C 2024 Appl. Phys. Lett. 124 214102

    [7]

    Ren C H, Huang B D, Zhang C, Qi B, Chen W J, Shao T 2023 Plasma Sources Sci. Technol. 32 025004

    [8]

    Liu K, Geng W Q, Zhou X F, Duan Q S, Zheng Z F, Ostrikov K 2023 Plasma Sources Sci. Technol. 32 025005

    [9]

    Mikheyev P A, Demyanov A V, Kochetov I V, Sludnova A A, Torbin A P, Mebel A M, Azyazov V N 2020 Plasma Sources Sci. Technol. 29 015012

    [10]

    Liu F, Li S H, Zhao Y L, Akram S, Zhang L, Fang Z 2023 Plasma Sci. Technol. 25 104001

    [11]

    Wang Z F, Liu L B, Liu D X, Zhu M Y, Chen J K, Zhang J Y, Zhang F G, Jiang J N, Guo L, Wang X H, Rong M Z 2022 Plasma Sources Sci. Technol. 31 05LT01

    [12]

    Qiao J J, Yang Q, Wang D Z, Xiong Q 2023 Plasma Sources Sci. Technol. 32 11LT01

    [13]

    Li X C, Zhang L L, Chen K, Ran J X, Pang X X, Jia P Y 2024 IEEE Trans. Plasma Sci. 52 1619-1630

    [14]

    Zhang L L, Li T X, Pang X X, Ge Y Q, Liu X Q, Ran J X, Li Q, Li X C 2025 Acta Phys. Sin. 74 135201 (in Chinese) [张璐璐, 李天翔, 庞学霞, 葛禹琦, 刘晓倩, 冉俊霞, 李庆, 李雪辰 2025 物理学报 74 135201]

    [15]

    Zhang L Y, Zhang Q Z, Mujahid Z, Neuroth C, Berger B, Schulze J 2024 Plasma Sources Sci. Technol. 33 105016

    [16]

    Poramapijitwat P, Thana P, Boonyawan D, Janpong K, Kuensaen C, Charerntantanakul W, Yu L D, Sarapirom S 2020 Surf. Coat. Technol. 402 126482

    [17]

    Wang J, Li J, Lei B Y, Ran S, Xu B P, Liu Y H, Li X Z, Wang Y S, Tang J, Zhao W, Duan Y X 2021 Plasma Sources Sci. Technol. 30 035012

    [18]

    Wu K Y, Wu J C, Jia B Y, Ren C H, Kang P C, Jia P Y, Li X C 2020 Phys. Plasmas 27 082308

    [19]

    Zhang J, Tang W W, Wang Y H, Wang D Z 2023 Plasma Sources Sci. Technol. 32 055005

    [20]

    Raizer Y, Kisin V, Allen J 1991 Gas Discharge Physics

    [21]

    Jovanović A P, Loffhagen D, Becker M M 2022 Plasma Sources Sci. Technol. 31 04LT02

    [22]

    Ran J X, Chen Q Y, Zhou Y X, Tian S, Wu J C, Li P R, Li Q, Zhang X X, Li X C 2025 Plasma Process Polym. 22 e70023

    [23]

    Akishev Y, Alekseeva T, Karalnik V, Petryakov A 2022 Plasma Sources Sci. Technol. 31 084001

    [24]

    Bernecker B, Callegari T, Boeuf J P 2011 J. Phys. D: Appl. Phys. 44 262002

    [25]

    Callegari T, Bernecker B, Boeuf J P 2014 Plasma Sources Sci. Technol. 23, 054003

    [26]

    Hao Y P, Fang Q, Wan H R, Han Y Y, Yang L, Li L C 2019 Phys. Plasmas 26 073518

    [27]

    Wan H R, Hao Y P, Fang Q, Su H W, Yang L, Li L C 2020 Acta Phys. Sin. 69 145203 (in Chinese) [万海容, 郝艳捧, 房强, 苏恒炜, 阳林, 李立浧 2020 物理学报 69 145203]

    [28]

    Massines F, Gherardi N, Naudé N, Ségur P 2009 Eur. Phys. J. Appl. Phys. 47 22805

    [29]

    Soloviev V R, Anokhin E M, Aleksandrov N L 2020 Plasma Sources Sci. Technol. 29 035006

    [30]

    Bajon C, Dap S, Belinger A, Guaitella O, Hoder T, Naudé N 2023 Plasma Sources Sci. Technol. 32 045012

    [31]

    Steuer D, van Impel H, Labenski R, Schulz-von der Gathen V, Böke M, Golda J 2025 J. Phys. D: Appl. Phys. 58 085211

    [32]

    Wang Y Y, Yan H J, Guo H F, Xu Y F, Zhang Q Z, Song J 2021 Plasma Sources Sci. Technol. 30 075009

    [33]

    Huang Z M, Hao Y P, Yang L, Han Y X, Li L C 2015 Phys. Plasmas 22 123509

    [34]

    Jiang W M, Li J, Tang J, Wang Y S, Zhao W, Duan Y X 2015 Sci. Rep. 5 16391

    [35]

    Ráhel J, Síra M, Stahel P, Trunec D 2007 Contrib. Plasma Phys. 47 34-39

    [36]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. Technol. 28 075003

    [37]

    Urabe K, Yamada K, Sakai O 2011 Jpn. J. Appl. Phys. 50 116002

    [38]

    Sublet A, Ding C, Dorier J L, Hollenstein C, Fayet P, Coursimault F 2006 Plasma Sources Sci. Technol. 15 627-634

    [39]

    Fang Z, Lin J, Xie X, Qiu Y, Kuffel E 2009 J. Phys. D: Appl. Phys. 42 085203

    [40]

    Li X C, Zhang Q, Jia P Y, Chu J D, Zhang P P, Dong L F 2017 Phys. Plasmas 24 033505

    [41]

    Pinchuk M E, Stepanova O M, Gromov M, Leys C, Nikiforov A 2020 Appl. Phys. Lett. 116 164102

    [42]

    Fan Z H, Qi H C, Liu Y D, Yan H J, Ren C S 2016 Phys. Plasmas 23 123520

    [43]

    Chiper A S, Anita V, Agheorghiesei C, Pohoata V, Anita M, Popa G 2004 Plasma Process Polym. 1 57-62

    [44]

    Ran J X, Zhang X X, Zhang Y, Wu KY, Zhao N, He X R, Dai X H, Liang Q H, Li X C 2023 Plasma Sci. Technol. 25 055403

    [45]

    Lou Y Q, Tang J F, Gu H Y, Zhou D S 2025 J. Electrostat. 134 104016

    [46]

    Hao Y P, Zheng B, Liu Y G 2014 Phys. Plasmas 21 013503

    [47]

    Hao Y P, Han Y Y, Huang Z M, Yang L, Dai D, Li L C 2018 Phys. Plasmas 25 013516

    [48]

    Wan J, Wang Q, Dai D, Ning W J 2019 Phys. Plasmas 26 103510

    [49]

    Crispim L W S, da Silva C D, Amorim J, Ballester M Y 2024 Phys. Scr. 99 065521

    [50]

    Ren C H, He X R, Jia P Y, Wu K Y, Li X C 2020 Phys. Plasmas 27 113507

    [51]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722-733

    [52]

    Lazarou C, Belmonte T, Chiper A S, Georghiou G E 2016 Plasma Sources Sci. Technol. 25 055023

    [53]

    Wang J, Lei B Y, Li J, Xu Y G, Wang Y S, Tang J, Zhao W, Duan Y X 2020 Phys. Plasmas 27 043501

    [54]

    Zhang Z H, Zhang G J, Shao X J, Chang Z S, Peng Z Y, Xu H 2012 Acta Phys. Sin. 61 245205 (in Chinese) [张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊 2012 物理学报 61 245205]

    [55]

    Li X C, Ren C H, He X R, Wu K Y, Jia P Y, Li S Z 2020 Plasma Process Polym. 17 e1900228

    [56]

    Moravej M, Yang X, Barankin M, Penelon J, Babayan S E, Hicks R F 2006 Plasma Sources Sci. Technol. 15 204-210

    [57]

    Vitello P A, Penetrante B M, Bardsley J N 1994 Phys. Rev. E 49 5574-5598

    [58]

    Shirafuji T, Kitagawa T, Wakai T, Tachibana K 2003 Appl. Phys. Lett. 83 2309-2311

    [59]

    Takaki K, Nawa K, Mukaigawa S, Fujiwara T, Aizawa T 2008 IEEE Trans. Plasma Sci. 36 1260-1261

    [60]

    Zhang J, Wang Y H, Wang D Z 2015 Phys. Plasmas 22 043517

    [61]

    Li X C, Liu R, Jia P Y, Wu K Y, Ren C H, Kang P C, Jia B Y, Li Y R 2018 Phys. Plasmas 25, 073510

    [62]

    Wang J, Li J, Lei B Y, Xing Y F, Xu B P, Liu Y H, Li X Z, Wang Y S, Tang J, Zhao W, Duan Y X 2020 Phys. Plasmas 27 073503

    [63]

    Li X C, Ge Y Q, Wan W J, Zhang X X, Sun H, Ran J X, Pang X X, Wu K Y, Jia P Y 2025 Phys. Scr. 100 075602

    [64]

    Li X C, Wan W J, Liu X Q, Chen M, Wu K Y, Ran J X, Pang X X, Zhang X X, Wu J C, Jia P Y, Sun H 2025 Chin. Phys. B 34 035202

    [65]

    Wang Q, Ning W J, Dai D, Zhang Y H, Ouyang J T 2019 J. Phys. D: Appl. Phys. 52 205201

    [66]

    Massines F, Gherardi N, Naudé N, Ségur P 2005 Plasma Phys. Control. Fusion 47 B577–B588

    [67]

    Luo H Y, Liang Z, Lv B, Wang X X, Guan Z C, Wang L M 2007 Appl. Phys. Lett. 91 221504

    [68]

    Jia P Y, Gao K, Zhou S, Chen J Y, Wu J C, Wu K Y, Li X C 2021 Plasma Sources Sci. Technol. 30 095021

    [69]

    Jodzis S, Zieba M 2018 Vacuum 155 29-37

  • [1] 马乂辰, 王语菲, 王婷婷, 曹亚文, 李正清, 谭畅. 填充床介质阻挡放电火星CO2放电特性. 物理学报, doi: 10.7498/aps.74.20251061
    [2] 赵凯, 牟宗信, 张家良. 同轴介质阻挡放电发生器介质层等效电容和负载特性研究. 物理学报, doi: 10.7498/aps.63.185208
    [3] 戴栋, 王其明, 郝艳捧. 大气压氦气介质阻挡放电中的周期一不对称放电实验研究. 物理学报, doi: 10.7498/aps.62.135204
    [4] 董丽芳, 杨玉杰, 刘为远, 岳晗, 王帅, 刘忠伟, 陈强. 不同电介质结构下介质阻挡放电特性研究. 物理学报, doi: 10.7498/aps.60.025216
    [5] 董丽芳, 李树峰, 范伟丽. 介质阻挡放电丝结构转变中的缺陷研究. 物理学报, doi: 10.7498/aps.60.065205
    [6] 董丽芳, 岳晗, 范伟丽, 李媛媛, 杨玉杰, 肖红. 介质阻挡放电跃变升压模式下靶波斑图研究. 物理学报, doi: 10.7498/aps.60.065206
    [7] 董丽芳, 杨玉杰, 范伟丽, 岳晗, 王帅, 肖红. 介质阻挡放电中放电丝结构相变过程研究. 物理学报, doi: 10.7498/aps.59.1917
    [8] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究. 物理学报, doi: 10.7498/aps.59.8747
    [9] 郝艳捧, 阳林, 涂恩来, 陈建阳, 朱展文, 王晓蕾. 实验研究大气压多脉冲辉光放电的模式和机理. 物理学报, doi: 10.7498/aps.59.2610
    [10] 梁卓, 罗海云, 王新新, 关志成, 王黎明. 气流对氮气介质阻挡放电气体温度及放电模式的影响. 物理学报, doi: 10.7498/aps.59.8739
    [11] 董丽芳, 王红芳, 刘微粒, 贺亚峰, 刘富成, 刘书华. 介质阻挡放电中电介质参量对放电时间特性的影响. 物理学报, doi: 10.7498/aps.57.1802
    [12] 李雪辰, 贾鹏英, 刘志辉, 李立春, 董丽芳. 介质阻挡放电丝模式和均匀模式转化的特性. 物理学报, doi: 10.7498/aps.57.1001
    [13] 董丽芳, 高瑞玲, 贺亚峰, 范伟丽, 李雪辰, 刘书华, 刘微粒. 介质阻挡放电斑图中放电通道的相互作用研究. 物理学报, doi: 10.7498/aps.56.1471
    [14] 尹增谦, 万景瑜, 黄明强, 王慧娟. 介质阻挡放电中的能量转换过程研究. 物理学报, doi: 10.7498/aps.56.7078
    [15] 欧阳吉庭, 何 锋, 缪劲松, 冯 硕. 共面介质阻挡放电特性研究. 物理学报, doi: 10.7498/aps.55.5969
    [16] 王艳辉, 王德真. 介质阻挡均匀大气压氮气放电特性研究. 物理学报, doi: 10.7498/aps.55.5923
    [17] 王艳辉, 王德真. 大气压下多脉冲均匀介质阻挡放电的研究. 物理学报, doi: 10.7498/aps.54.1295
    [18] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟. 物理学报, doi: 10.7498/aps.54.4808
    [19] 董丽芳, 毛志国, 冉俊霞. 氩气介质阻挡放电不同放电模式的电学特性研究. 物理学报, doi: 10.7498/aps.54.3268
    [20] 尹增谦, 王 龙, 董丽芳, 李雪辰, 柴志方. 介质阻挡放电中微放电的映射方程. 物理学报, doi: 10.7498/aps.52.929
计量
  • 文章访问数:  63
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 上网日期:  2026-01-06

/

返回文章
返回