x

留言板

 引用本文:
 Citation:

LARGE DEFLECTION OF A CIRCULAR PLATE WITH A CIRCULAR HOLE AT THE CENTER

YEH KAI-YUAN
PDF

Abstract

The equation for the large deflection of thin plates established by Th. von Karman has been well known for many years. But so far there are only a few problems been studied with numerical certainty. S. Levy was the first to apply this equation to solve the problem of a clamped plate under uniform pressure by the method of power series. After this, S. Levy got the solution of the simply supported rectangular plate also under uniform load by the method of double trigonometric series. These two methods used nearly the same procedure of determining the numerical value of the coefficents. But their numerical works are too cumbersome. Lately, W. Z. Chien treated Way's problem again by means of the perturbation method and obtained excellent results.In this paper, the problem of large deflection of a circular plate with a circular hole at the center is treated with the perturbation method.Recently, C. A. AлeKceeB worked out the same problem with the membrance theory, but his results differ greatly from the practical case of a thin plate. The reason of this is chiefly due to his neglecting the effect of bending. The results obtained in this paper are compared with those of AлeKceeв and discussed. We conclude that under concentrated load, the bending effect is momentous and therefore it cannot be neglected. The problem can be extended to other boundary conditions with the maximum deflection YM as parameter.

参考文献

 [1]

施引文献

•  [1]
•  [1] 邬融, 孙明营, 周申蕾, 乔战峰, 华能. 衍射波导用于大视场角的物理问题. 物理学报, 2020, 69(23): 234209. doi: 10.7498/aps.69.20200835 [2] 席涛, 范伟, 储根柏, 税敏, 何卫华, 赵永强, 辛建婷, 谷渝秋. 超高应变率载荷下铜材料层裂特性研究. 物理学报, 2017, 66(4): 040202. doi: 10.7498/aps.66.040202 [3] 张耿鸿, 朱佳, 姜格蕾, 王彪, 郑跃. 压缩应变载荷下氮化镓隧道结微观压电特性及其巨压电电阻效应. 物理学报, 2016, 65(10): 107701. doi: 10.7498/aps.65.107701 [4] 张攀, 赵雪丹, 张国华, 张祺, 孙其诚, 侯志坚, 董军军. 垂直载荷下颗粒物质的声波探测和非线性响应. 物理学报, 2016, 65(2): 024501. doi: 10.7498/aps.65.024501 [5] 姚小虎, 张晓晴, 韩强. 轴向冲击载荷作用下双壁碳纳米管的动力屈曲. 物理学报, 2011, 60(9): 096202. doi: 10.7498/aps.60.096202 [6] 吴文平, 郭雅芳, 汪越胜, 徐爽. 镍基单晶高温合金界面位错网在剪切载荷作用下的演化. 物理学报, 2011, 60(5): 056802. doi: 10.7498/aps.60.056802 [7] 刘培生. 多孔材料在压缩载荷作用下的剪切破坏模式分析. 物理学报, 2010, 59(7): 4849-4856. doi: 10.7498/aps.59.4849 [8] 刘培生. 多孔材料在压缩载荷作用下的屈曲失效模式分析. 物理学报, 2010, 59(12): 8801-8806. doi: 10.7498/aps.59.8801 [9] 黄元士, 王中光, 夏月波, 葛庭燧. 疲劳载荷作用下铝镁合金中的粗滑移区的形成. 物理学报, 1974, 23(6): 17-29. doi: 10.7498/aps.23.17-3 [10] 葛庭燧, 王中光. 在疲劳载荷下含铜4%的铝合金中的位错钉扎和解脱. 物理学报, 1962, 18(8): 392-399. doi: 10.7498/aps.18.392 [11] 葛庭燧, 王中光. 铝在疲劳载荷作用下所发生的基本过程. 物理学报, 1962, 18(8): 379-391. doi: 10.7498/aps.18.379 [12] 黄择言. 一边平夾另一边受均布力矩作用的环形薄板大挠度问题. 物理学报, 1957, 13(4): 313-338. doi: 10.7498/aps.13.313 [13] 黄择言. 均匀载荷下固定边环形薄板的大挠度问题. 物理学报, 1957, 13(4): 294-312. doi: 10.7498/aps.13.294 [14] 胡海昌. 各向异性的悬臂梁负担均布载荷的弯曲问题. 物理学报, 1956, 12(4): 339-349. doi: 10.7498/aps.12.339 [15] 林鸿荪. 任意横向载荷下弹性圆形及圆环形薄板的弯曲. 物理学报, 1956, 12(4): 360-375. doi: 10.7498/aps.12.360 [16] 顾璆琳. 在均布载荷作用下受有预加张力的弹性圆薄膜大挠度问题. 物理学报, 1956, 12(4): 319-338. doi: 10.7498/aps.12.319 [17] 陈凤初. 懸樑的大撓度问题. 物理学报, 1955, 11(1): 55-71. doi: 10.7498/aps.11.55 [18] 胡海昌. 球面扁薄圆壳的跳跃问题. 物理学报, 1954, 10(2): 105-136. doi: 10.7498/aps.10.105 [19] 钱伟长, 叶开沅. 圆薄板大撓度问题. 物理学报, 1954, 10(3): 209-238. doi: 10.7498/aps.10.209 [20] 胡海昌. 在均佈及中心集中载荷作用下圆板的大撓度问题. 物理学报, 1954, 10(4): 383-394. doi: 10.7498/aps.10.383
• 文章访问数:  8304
• PDF下载量:  906
• 被引次数: 0
出版历程
• 收稿日期:  1952-11-27
• 刊出日期:  1953-01-05

/