搜索

x
专题

更多 
领域
文章类型

功能氧化物薄膜新奇物理性质

       过渡金属氧化物具有比半导体材料更复杂的晶体结构、化学配比关系和价态变化、以及相图等, 其内部还存在晶格、电荷、自旋、轨道等多个自由度之间的竞争耦合关系, 因此具有更丰富的物理性能 (如高温超导、庞磁电阻、铁电/介电、多铁性、金属-绝缘体相变、光电、热电、光学非线性、重费米子等) 和更多可调控其性能的外场激励 (电、磁、光、应力、温度等外场). 尽管现今基于半导体材料的器件在信息工业中占统治地位, 这些具有快速、庞大响应及高电容特性的功能氧化物材料, 实现了操控多个自由度 (包括自旋、电荷、轨道、晶格、氧空位等) 对电、光、磁学性能调控而具有更多功能的氧化物器件, 这可能将会是下一代理想器件. 另外, 区别于块体材料, 薄膜材料具有低维度和异质界面等特点, 可以针对量子约束、量子相干、量子涨落、拓扑电子态、电子-电子相互作用、自旋-轨道耦合以及对称性破缺等物理问题进行人工结构设计和多场调控. 随着薄膜技术的精进和飞速发展, 科学家们已经实现了单原胞层薄膜的精确制备和准确化学计量比的控制, 产生了一系列具有重要影响力的工作. 例如, 美国斯坦福大学的 Hwang 教授等在过渡金属氧化物界面处观测到铁磁相与超导相共存、高迁移率二维电子气以及新型超导—镍基超导等, 中国科学院的马秀良研究员和美国加州大学伯克利大学的 Ramesh 教授在 PbTiO3薄膜中发现拓扑铁电极化畴结构等. 多功能氧化物薄膜体系为力、光、电、磁等外场调控提供广阔平台, 从而衍生出许多新奇量子物性和功能, 进而大大拓展物质科学的研究空间, 同时对新物态的探索和量子临界现象的研究具有重要意义. 同时,多功能氧化物薄膜的发展也将为未来量子信息和量子计算提供可靠的材料基础, 甚至突破目前材料体系的壁垒, 有望在上述领域产生深远的影响. 

       应《物理学报》编辑部的邀请, 编者邀请了部分活跃在多功能氧化物材料研究的第一线的中青年科学家, 组织了本期的专题. 本期专题文章大致分成如下几个方面: 在氧化物薄膜的新奇物性方面, 张坚地教授报道了氧化物异质界面上的准二维超导现象, 廖昭亮教授报道了氧化物异质结中的反常霍尔效应, 翟晓芳教授和成龙教授报道了超薄膜制备条件和拓扑霍尔效应之间的关联, 汪志明教授报道了过渡金属氧化物中新奇量子态与电荷-自旋互转换研究进展, 郭尔佳研究员报道了钴氧化物中晶格与自旋的关联耦合效应; 在氧化物铁电薄膜的研究方面, 陈祖煌教授报道了锆酸铅基反铁电薄膜研究现状与展望, 金魁研究员、王旭研究员和石兢教授报道了面向宽温域功能器件的连续组分外延铁电薄膜的研究, 刘明教授和董国华教授报道了自支撑单晶氧化物薄膜的应用研究进展; 在外场对氧化物薄膜物性的调控方面, 李千教授报道了应变增强 Nb 掺杂 SrTiO3薄膜的热电性能, 编者报道了外场对拓扑相变类氧化物薄膜物性的调控效应; 在氧化物薄膜的应用方面, 樊贞教授和刘俊明教授报道了钙钛矿相界面插层对 SrFeOx基忆阻器的性能提升, 袁国亮教授和陆旭兵教授报道了 HfO2基铁电薄膜的结构、性能调控及典型器件应用, 吴真平教授和王月晖博士后报道了基于 HfO2插层的 Ga2O3基金属-绝缘体-半导体结构日盲紫外光电探测器.

       本专题从不同的角度描述了多功能氧化物薄膜的进展, 反映了此领域的一些现状, 希望对读者了解此前沿课题有所帮助.
客座编辑:郭海中 郑州大学
物理学报. 2023, 72(9).
氧化物异质界面上的准二维超导
冉峰, 梁艳, 张坚地
2023, 72 (9): 097401. doi: 10.7498/aps.72.20230044
摘要 +
由于对称性破缺、晶格失配、电荷转移和空间限域等多自由度的协同关联作用, 氧化物异质界面演生出许多与相应体材料所不同的物理性质, 其中氧化物界面超导由于蕴含丰富物理内涵吸引了广泛的关注. 近年来, 得益于氧化物异质外延以及物性精准表征技术的迅猛发展, 研究人员已经在多种氧化物异质界面上观测到了准二维的界面超导, 并研究了与其相关的许多新奇量子现象, 不仅推动了凝聚态物理研究的发展, 也为界面超导走向实际应用奠定了重要基础. 本文主要介绍和讨论氧化物界面上的准二维超导, 以典型的LaAlO3/SrTiO3界面准二维超导及La2CuO4/La1.56Sr0.44CuO4等铜氧化物界面超导为例, 总结分析氧化物界面超导中新奇的物理现象, 并指出该研究体系目前存在的一些问题, 最后展望界面超导未来的发展方向.
钙钛矿相界面插层对SrFeOx基忆阻器的性能提升
陈开辉, 樊贞, 董帅, 李文杰, 陈奕宏, 田国, 陈德杨, 秦明辉, 曾敏, 陆旭兵, 周国富, 高兴森, 刘俊明
2023, 72 (9): 097301. doi: 10.7498/aps.72.20221934
摘要 +
SrFeOx (SFO)是一种能在SrFeO2.5钙铁石(BM)相和SrFeO3钙钛矿(PV)相之间发生可逆拓扑相变的材料. 这种相变能显著改变电导却维持晶格框架不变, 使SFO成为一种可靠的阻变材料. 目前大部分SFO基忆阻器使用单层BM-SFO作为阻变功能层, 这种器件一般表现出突变型阻变行为, 因而其应用被局限于两态存储. 对于神经形态计算等应用, 单层BM-SFO忆阻器存在阻态数少、阻值波动大等问题. 为解决这些问题, 本研究设计出BM-SFO/PV-SFO双层忆阻器, 其中PV-SFO层为富氧界面插层, 可在导电细丝形成过程中提供大量氧离子并在断裂过程中回收氧离子, 使导电细丝的几何尺寸(如直径)在更大范围内可调, 从而获得更多、更连续且稳定的阻态, 可用于模拟长时程增强和抑制等突触行为. 基于该器件仿真构建了全连接神经网络(ANN), 在手写体数字光学识别(ORHD)数据集进行在线训练后获得了86.3%的识别准确率, 相比于单层忆阻器基ANN的准确率提升69.3%. 本研究为SFO基忆阻器性能调控提供了一种新方法, 并展示了它们作为人工突触器件在神经形态计算方面的应用潜力.
Pt/La0.67Sr0.33MnO3异质结中的反常霍尔效应
扈仕林, 刘均华, 邓志雄, 肖文, 杨瞻, 陈凯, 廖昭亮
2023, 72 (9): 097503. doi: 10.7498/aps.72.20221852
摘要 +
非磁/铁磁异质结构中存在很多有趣的演生现象, 特别是, 铂/铁磁异质结构中的反常霍尔效应是一个研究热点. 采用脉冲激光沉积技术和射频磁控溅射技术制备出具有原子级接触界面的铂/锰酸锶镧异质结, 并对异质结的电输运性能进行了系统的研究. 实验发现, 铂/锰酸锶镧异质结中存在由铂贡献的反常霍尔效应, 这是由磁近邻效应诱导铂表现出铁磁性造成的. 反常霍尔电阻随着温度的降低而急剧增加, 并且在低于 40 K时改变符号. 反常霍尔电阻随铂厚度的增加而急剧降低, 证实了铂的铁磁性起源于异质结界面. 此外, 异质结在低外加磁场下可能产生了拓扑霍尔效应, 这是由异质结界面处的Dzyaloshinskii-Moriya相互作用诱导产生手性磁畴壁结构引起的. 上述研究结果为进一步理解非磁/铁磁异质结构中的电子自旋和电荷输运之间的相互作用提供了实验基础.
SrRuO3超薄膜制备条件和拓扑霍尔效应的关联
张静娴, 保明睿, 叶飞, 刘佳, 成龙, 翟晓芳
2023, 72 (9): 096802. doi: 10.7498/aps.72.20221854
摘要 +
使用激光分子束外延在SrTiO3(001)衬底上生长SrRuO3薄膜, 并研究激光能量密度、生长温度和靶材表面烧蚀度等生长参数对于SrRuO3表面形貌、基本磁电性质以及拓扑霍尔效应的影响. 当在最优条件下生长SrRuO3薄膜时, 样品表面平整、台阶清晰, 具有最低的金属-绝缘体转变温度, 电阻率最低, 且具有最显著的拓扑霍尔效应; 而改变生长参数生长的SrRuO3薄膜由于存在更多的缺陷, 其表面较粗糙, 金属-绝缘体转变温度增大, 或表现出绝缘体行为, 而拓扑霍尔效应会变弱甚至消失.
面向宽温域功能器件的连续组分外延铁电薄膜
熊沛雨, 倪壮, 林泽丰, 柏欣博, 刘天想, 张翔宇, 袁洁, 王旭, 石兢, 金魁
2023, 72 (9): 097701. doi: 10.7498/aps.72.20230154
摘要 +
BaxSr1–xTiO3 (BST)铁电薄膜因为拥有高介电常数、强电场调谐性和较低的微波频段介电损耗可应用于微波可调谐器件. 然而铁电材料中普遍存在的介电常数-温度依赖性使得常规单组分铁电薄膜的高可调率温区受制于相变温度, 难以满足宽温域适用性的需求. 为研究可用于宽温域功能器件的铁电薄膜, 采用脉冲激光沉积(PLD)技术制备了单组分Ba0.5Sr0.5TiO3薄膜、Ba0.2Sr0.8TiO3薄膜以及Ba0.2Sr0.8TiO3/Ba0.5Sr0.5TiO3异质结构薄膜. 通过对比其介电性能, 发现垂直方向上Ba/Sr组分分布可有效改善BST薄膜的温度依赖性, 然而异质结构的构建可能带来界面问题, 同时也使其品质因子难以提升. 本文提出采用独特的水平方向连续组分薄膜制备技术制备BST组合薄膜, 有望在拓宽BST薄膜相变温区的同时避免界面控制的难题.
基于HfO2插层的Ga2O3基金属-绝缘体-半导体结构日盲紫外光电探测器
董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平
2023, 72 (9): 097302. doi: 10.7498/aps.72.20222222
摘要 +
作为一种新兴的超宽带隙半导体, Ga2O3在开发高性能的日盲紫外光电探测器方面具有独特的优势. 金属-半导体-金属结构因其制备方法简单、集光面积大等优点在Ga2O3日盲紫外光电探测器中得到了广泛的应用. 本文在传统的金属-半导体-金属结构Ga2O3日盲紫外光电探测器的基础上, 利用原子层沉积技术引入高介电性和绝缘性的氧化铪(HfO2)作为绝缘层和钝化层, 制备出带有HfO2插层的金属-绝缘体-半导体结构的Ga2O3日盲紫外光电探测器, 显著降低了暗电流, 提升了光暗电流比, 同时提高了器件的比探测率和响应速度, 为未来Ga2O3在高性能弱光探测器件制备提供了一种新通用策略.
HfO2基铁电薄膜的结构、性能调控及典型器件应用
袁国亮, 王琛皓, 唐文彬, 张睿, 陆旭兵
2023, 72 (9): 097703. doi: 10.7498/aps.72.20222221
摘要 +
大数据、物联网和人工智能的快速发展对存储芯片、逻辑芯片和其他电子元器件的性能提出了越来越高的要求. 本文介绍了HfO2基铁电薄膜的铁电性起源, 通过掺杂元素改变晶体结构的对称性或引入适量的氧空位来降低相转变的能垒可以增强HfO2基薄膜的铁电性, 在衬底和电极之间引入应力、减小薄膜厚度、构建纳米层结构和降低退火温度等方法也可以稳定铁电相. 与钙钛矿氧化物铁电薄膜相比, HfO2基铁电薄膜具有与现有半导体工艺兼容性更强和在纳米级厚度下铁电性强等优点. 铁电存储器件理论上可以达到闪存的存储密度, 读写次数超过1010次, 同时具有读写速度快、低操作电压和低功耗等优点. 此外, 还总结了HfO2基薄膜在负电容晶体管、铁电隧道结、神经形态计算和反铁电储能等方面的主要研究成果. 最后, 讨论了HfO2基铁电薄膜器件当前面临的挑战和未来的机遇.
自支撑单晶氧化物薄膜的应用研究进展
彭若波, 董国华, 刘明
2023, 72 (9): 098502. doi: 10.7498/aps.72.20222382
摘要 +
随着柔性电子的迅猛发展, 越来越多的新型智能可穿戴电子设备, 逐渐改变人们的生活方式. 同时, 可穿戴器件小型化、柔性化、集成化、低功耗等需求不断提高, 对柔性功能材料的要求越来越高, 特别是亟需具有丰富功能特性的氧化物薄膜材料. 近年来, 随着薄膜生长与剥离技术的进步, 自支撑单晶氧化物薄膜被开发出来. 由于其脱离衬底束缚展现出优异柔性特征的同时, 保持了丰富的磁、电、光、热、力等功能, 在信息存储、智能传感、生物医疗、能源等领域具有广泛的应用前景. 本文从自支撑氧化物薄膜的制备技术出发, 展开介绍了基于铁电、压电、铁磁、金属-绝缘体转变等物理效应的晶体管存储器、能量收集、纳米发电机、应变传感器、储能器件及超导等方面的应用.
应变增强Nb掺杂SrTiO3薄膜热电性能
马云鹏, 庄华鹭, 李敬锋, 李千
2023, 72 (9): 096803. doi: 10.7498/aps.72.20222301
摘要 +
高性能热电材料的发展有望帮助解决未来能源危机, 且随着可穿戴器件的发展与应用, 热电材料和器件除了要具备更高的热-电转化性能以外, 还必须具有良好的柔性. 将热电材料制成薄膜既可以为微型器件供电, 也有潜力应用于柔性器件. 本文使用脉冲激光沉积方法, 在商用SrTiO3 (STO)和La0.3Sr0.7Al0.65Ta0.35O3 (LSAT)衬底上制备得到了不同厚度的高质量铌掺杂钛酸锶薄膜(Nb:STO), 并对薄膜的表面形貌、结构以及热电性能进行表征与测试. 结果显示, 使用LSAT作为衬底可以对薄膜施加面内压应变, 随着薄膜厚度的增大, 应变逐渐释放并接近于块体Nb:STO. 随着厚度的增大, 薄膜的热电性能逐渐提升, 在STO衬底上生长的208 nm厚样品的室温功率因子相比于52 nm样品提升了187%. 此外, 144 nm厚度的Nb:STO/LSAT薄膜室温塞贝克系数达到了265.95 μV/K, 这是由于衬底应变导致薄膜样品的能带变化. 本工作表明通过应变工程调控铌掺杂钛酸锶薄膜热电性能的可行性, 为后续提高此类薄膜材料的热电性能提供了一种新思路.
外场对拓扑相变氧化物薄膜物性的调控研究进展
孙雨婷, 李明明, 王玲瑞, 樊贞, 郭尔佳, 郭海中
2023, 72 (9): 096801. doi: 10.7498/aps.72.20222266
摘要 +
钙钛矿型过渡金属氧化物在外场激励下可以通过得失氧离子发生显著的结构拓扑相变, 同时伴随着输运、磁性、光学等物性的巨大变化, 是近年来被重点关注的研究体系, 在固态氧化物燃料电池、氧气传感器、催化活性、智能光学窗口以及神经形态计算器件中具有巨大的应用前景. 本工作回顾了近年来国内外研究小组在拓扑相变氧化物薄膜及其物性调控方面的工作进展, 详细介绍了这类典型薄膜材料在应力场、电场、光场、温度场等外场激励下呈现出的新奇物性, 并讨论了其基本物理机制. 本综述旨在进一步认识此类材料中的电荷、晶格、轨道等量子序之间的微观耦合机制及其与宏观物性的关联, 相关研究有望为基于功能氧化物的高灵敏度、弱场响应的电子器件提供新材料、新途径和新思路.
过渡金属氧化物中新奇量子态与电荷-自旋互转换研究进展
劳斌, 郑轩, 李晟, 汪志明
2023, 72 (9): 097702. doi: 10.7498/aps.72.20222219
摘要 +
为了满足信息技术时代下海量数据的高效存储及处理, 具有低功耗、非易失性的自旋电子器件受到极大关注. 能够高效产生自旋流的自旋源材料是新型自旋-轨道力矩器件的重要组成部分. 近二十年来, 在探索具有高效产生自旋流的材料体系, 以及理解材料相关物理机制两方面都取得了较大的进展. 最近, 在过渡金属氧化物中涌现出许多与产生自旋流密切相关的新奇量子态, 成为自旋源的新兴材料体系被广泛研究. 研究结果表明, 过渡金属氧化物具有对电子结构高度敏感、显著且灵活可调的电荷-自旋转换效率, 具有巨大的应用潜力. 本文主要综述了过渡金属氧化物中新奇的电子能带结构及其与电荷-自旋互转换的关联机制, 并对未来的发展趋势进行了展望.
锆酸铅基反铁电薄膜研究现状与展望
张天富, 司洋洋, 黎意杰, 陈祖煌
2023, 72 (9): 097704. doi: 10.7498/aps.72.20230389
摘要 +
距离发现反铁电已有70多年的历史, 其独特的电场诱导相变行为使其在储能、换能器、驱动器、电卡制冷、负电容晶体管、热管理等领域显示出了巨大的应用价值. 随着薄膜生长技术的发展及器件小型化、集成化趋势的需求, 反铁电薄膜受到越来越多的关注. 大量研究表明, 反铁电从块体到薄膜显现出与块体不同的新奇物性, 同时也面临更多挑战, 如尺寸效应使得其反铁电特性在临界厚度下减弱甚至消失等. 在此基础上, 回顾了锆酸铅基反铁电研究的发展历史, 从反铁电的起源、结构、相变到应用等方面进行了讨论. 希望能够吸引更多的研究者关注反铁电薄膜的发展, 探索未知的奥秘, 共同开发更多的新材料和新应用.
钴氧化物中晶格与自旋的关联耦合效应研究
陈盛如, 林珊, 洪海涛, 崔婷, 金桥, 王灿, 金奎娟, 郭尔佳
2023, 72 (9): 097502. doi: 10.7498/aps.72.20230206
摘要 +
强关联电子体系具有多序参量耦合且极易受到外场高效调控的特性. 钴氧化物(LaCoO3)是一类典型的多铁性(兼具铁弹性和铁磁性)氧化物材料, 受到了研究者们广泛和深入的研究. 过去, 针对钴氧化物的研究都集中于应力作用下的铁弹性相变和结构调控方面. 近年来, 研究人员新奇地发现钴氧化物薄膜在张应力作用下发生顺磁到铁磁相转变, 但其根源一直存在较大争议. 部分实验证据表明应力将会导致钴离子价态降低产生自旋态转变, 而另一些研究者认为应力诱导的纳米畴结构会呈现高自旋态的长程有序排列, 才是钴氧化物薄膜铁磁性的主要原因. 本综述主要介绍近几年来钴氧化物薄膜和异质结中自旋与晶格之间关联耦合效应的系列进展. 在保持钴离子价态不变时, 通过薄膜厚度、晶格失配应力、晶体对称性、表面形貌、界面氧离子配位和氧八面体倾转等结构因素诱导钴氧化物薄膜的自旋态可逆转变, 从而形成高度可调的宏观磁性. 进而, 研究者们利用原子级精度可控的薄膜生长技术构筑了单原胞层钴氧化物超晶格, 通过高效的结构调控, 实现了超薄二维磁性氧化物材料. 这些系列进展不仅澄清了强关联电子体系中晶格与自旋等序参量之间的强耦合关系, 而且为实现氧化物自旋电子器件所需的超薄室温铁磁材料提供了优良的候选者.