搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于HfO2插层的Ga2O3基金属-绝缘体-半导体结构日盲紫外光电探测器

董典萌 汪成 张清怡 张涛 杨永涛 夏翰驰 王月晖 吴真平

引用本文:
Citation:

基于HfO2插层的Ga2O3基金属-绝缘体-半导体结构日盲紫外光电探测器

董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平

Ga2O3-based metal-insulator-semiconductor solar-blind ultraviolet photodetector with HfO2 inserting layer

Dong Dian-Meng, Wang Cheng, Zhang Qing-Yi, Zhang Tao, Yang Yong-Tao, Xia Han-Chi, Wang Yue-Hui, Wu Zhen-Ping
PDF
HTML
导出引用
  • 作为一种新兴的超宽带隙半导体, Ga2O3在开发高性能的日盲紫外光电探测器方面具有独特的优势. 金属-半导体-金属结构因其制备方法简单、集光面积大等优点在Ga2O3日盲紫外光电探测器中得到了广泛的应用. 本文在传统的金属-半导体-金属结构Ga2O3日盲紫外光电探测器的基础上, 利用原子层沉积技术引入高介电性和绝缘性的氧化铪(HfO2)作为绝缘层和钝化层, 制备出带有HfO2插层的金属-绝缘体-半导体结构的Ga2O3日盲紫外光电探测器, 显著降低了暗电流, 提升了光暗电流比, 同时提高了器件的比探测率和响应速度, 为未来Ga2O3在高性能弱光探测器件制备提供了一种新通用策略.
    Solar-blind photodetector (PD) converts 200–280 nm ultraviolet (UV) light into electrical signals, thereby expanding application range from security communication to missile or fire alarms detections. As an emerging ultra-wide bandgap semiconductor, gallium oxide (Ga2O3) has sprung to the forefront of solar blind detection activity due to its key attributes, including suitable optical bandgap, convenient growth procedure, highly temperture/chemical/radiation tolerance, and thus becoming a promising candidate to break the current bottleneck of photomultiplier tubes. The Ga2O3-based solar blind PDs based on various architectures have been realized in the past decade, including photoconductive PDs, Schottky barrier PDs, and avalanche PDs. Till now, the metal-semiconductor-metal (MSM) structure has been widely used in developing photoconductive Ga2O3 solar-blind PDs because of its simple preparation method and large light collection area. Unfortunately, despite unremitting efforts, the performance metric of reported MSM-type Ga2O3 solar-blind PDs still lags behind the benchmark of commercial PMTs. Apparently, lack of solution to the problem has greatly hindered further research and practical applications in this field. One effective strategy for further enhancing the device performance such as detectivity, external quantum efficiency (EQE), and light-to-dark ratio heavily relies on blocking the dark current. In this work, high-quality single crystalline β-Ga2O3 with a uniform thickness of 700 nm is grown by using a metal organic chemical vapor deposition (MOCVD) technique. Then atomic layer deposition (ALD) fabricated ultrathin hafnium oxide (HfO2) films ( $ \sim $10 nm) are introduced as inserted insulators and passivation layers. The 30 nm/100 nm Ti/Au interdigital electrodes (length: 2800 μm, width: 200 μm, spacing: 200 μm, 4 pairs) are fabricated by sputtering on the top of the film as the Ohmic contacts. Taking advantage of its novel dielectric and insulating properties, the leakage current on Ga2O3 thin film can be effectively inhibited by the inserted ultrathin HfO2 layer, and thus further improving the performance of PDs. Compared with simple MSM structured Ga2O3 PD, the resulting metal-insulator-semiconductor (MIS) device significantly reduces dark current, and thus improving specific detectivity, enhancing light-to-dark current ratio, and increasing response speed. These findings advance a significant step toward the suppressing of dark current in MSM structured photoconductive PDs and provide great opportunities for developing high-performance weak UV signal sensing in the future.
      通信作者: 王月晖, yuehuiwang@bupt.edu.cn ; 吴真平, zhenpingwu@bupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074044)和信息光子学与光通信国家重点实验室开放基金(批准号: IPOC2021ZT05)资助的课题.
      Corresponding author: Wang Yue-Hui, yuehuiwang@bupt.edu.cn ; Wu Zhen-Ping, zhenpingwu@bupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074044) and the Open Fund of State Key Laboratory of Information Photonics and Optical Communications, China (Grant No. IPOC2021ZT05).
    [1]

    Chen X, Ren F, Gu S, Ye J 2019 Photonics Res. 7 381Google Scholar

    [2]

    Kan H, Zheng W, Fu C, Lin R, Luo J, Huang F 2020 ACS Appl. Mater. Interfaces 12 6030Google Scholar

    [3]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [4]

    Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z, Li Y R 2017 ACS Photonics 4 2203Google Scholar

    [5]

    Qin Y, Li L, Zhao X, Tompa G S, Dong H, Jian G, He Q, Tan P, Hou X, Zhang Z, Yu S, Sun H, Xu G, Miao X, Xue K, Long S, Liu M 2020 ACS Photonics 7 812Google Scholar

    [6]

    Qin Y, Sun H, Long S, Tompa G S, Salagaj T, Dong H, He Q, Jian G, Liu Q, Lü H, Liu M 2019 IEEE Electron Device Lett. 40 1475Google Scholar

    [7]

    Wang Y H, Tang Y Q, Li H R, Yang Z B, Zhang Q Y, He Z B, Huang X, Wei X H, Tang W H, Huang W, Wu Z P 2021 ACS Photonics 8 2256Google Scholar

    [8]

    Hu D, Wang Y, Wang Y, Huan W, Dong X, Yin J 2022 Mater. Lett. 312 131653Google Scholar

    [9]

    Liu S, Jiao S, Lu H, Nie Y, Gao S, Wang D, Wang J, Zhao L 2022 J. Alloys Compd. 890 161827Google Scholar

    [10]

    Wang Y, Li H, Cao J, Shen J, Zhang Q, Yang Y, Dong Z, Zhou T, Zhang Y, Tang W, Wu Z 2021 ACS Nano 15 16654Google Scholar

    [11]

    Hou X, Zhao X, Zhang Y, Zhang Z, Liu Y, Qin Y, Tan P, Chen C, Yu S, Ding M, Xu G, Hu Q, Long S 2022 Adv. Mater. 34 2106923Google Scholar

    [12]

    Cui S, Mei Z, Zhang Y, Liang H, Du X 2017 Adv. Opt. Mater. 5 1700454Google Scholar

    [13]

    Zhou H, Cong L, Ma J, Chen M, Song D, Wang H, Li P, Li B, Xu H, Liu Y 2020 J. Alloys Compd. 847 156536Google Scholar

    [14]

    Han Z, Liang H, Huo W, Zhu X, Du X, Mei Z 2020 Adv. Opt. Mater. 8 1901833Google Scholar

    [15]

    Chen C H 2013 Jpn. J. Appl. Phys. 52 08JF08Google Scholar

    [16]

    Sheoran H, Kumar V, Singh R 2022 ACS Appl. Electron. Mater. 4 2589Google Scholar

    [17]

    Arora K, Goel N, Kumar M, Kumar M 2018 ACS Photonics 5 2391Google Scholar

    [18]

    Qian L X, Gu Z, Huang X, Liu H, Lü Y, Feng Z, Zhang W 2021 ACS Appl. Mater. Interfaces 13 40837Google Scholar

    [19]

    Ma J, Lee O, Yoo G 2019 IEEE J. Electron Devices Society 7 512Google Scholar

    [20]

    Young S J, Ji L W, Chang S J, Liang S H, Lam K T, Fang T H, Chen K J, Du X L, Xue Q K 2008 Sens. Actuators, A 141 225Google Scholar

    [21]

    Wang W J, Shan C X, Zhu H, Ma F Y, Shen D Z, Fan X W, Choy K L 2010 J. Phys. D:Appl. Phys. 43 045102Google Scholar

    [22]

    Seol J H, Lee G H, Hahm S H 2018 IEEE Sens. J. 18 4477Google Scholar

    [23]

    Yin J, Liu L, Zang Y, Ying A, Hui W, Jiang S, Zhang C, Yang T, Chueh Y L, Li J, Kang J 2021 Light:Sci. Appl. 10 113Google Scholar

    [24]

    Oshima T, Hashikawa M, Tomizawa S, Miki K, Oishi T, Sasaki K, Kuramata A 2018 Appl. Phys. Exp. 11 112202Google Scholar

    [25]

    刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华 2022 物理学报 71 208501Google Scholar

    Liu Z, Li L, Zhi Y S, Du L, Fang J P, Li S, Yu J G, Zhang M L, Yang L L, Zhang S H, Guo Y F, Tang W H 2022 Acta Phys. Sin. 71 208501Google Scholar

    [26]

    Li S, Guo D, Li P, Wang X, Wang Y, Yan Z, Liu Z, Zhi Y, Huang Y, Wu Z, Tang W 2019 ACS Appl. Mater. Interfaces 11 35105Google Scholar

    [27]

    Wang Y, Yang Z, Li H, Li S, Zhi Y, Yan Z, Huang X, Wei X, Tang W, Wu Z 2020 ACS Appl. Mater. Interfaces 12 47714Google Scholar

    [28]

    Dou L T, Yang Y (Micheal), You J B, Hong Z R, Chang W H, Li Ga, Yang Y 2014 Nat. Commun. 5 5404Google Scholar

    [29]

    雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明 2021 物理学报 70 027801Google Scholar

    Lei T, Lü W M, Lü W X, Cui B Y, Hu R, Shi W H, Zeng Z M 2021 Acta Phys. Sin. 70 027801Google Scholar

    [30]

    李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 物理学报 71 048501Google Scholar

    Li X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501Google Scholar

    [31]

    周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊 2021 物理学报 70 178503Google Scholar

    Zhou S R, Zhang H, Mo H L, Liu H W, Xiong Y Q, Li H L, Kong C Y, Ye L J, Li W J 2021 Acta Phys. Sin. 70 178503Google Scholar

  • 图 1  光电探测器结构示意图 (a) MSM结构S1; (b) MIS结构S2; (c) MIS-Passivation结构S3

    Fig. 1.  Schematic diagrams of the photodetector structure: (a) MSM structure S1; (b) MIS structure S2; (c) MIS-passivation structure S3.

    图 2  Al2O3衬底上异质外延的β-Ga2O3薄膜的XRD谱图

    Fig. 2.  XRD patterns of epitaxial growth of β-Ga2O3 film on Al2O3 substrate.

    图 3  所制备薄膜的紫外-可见吸收谱图 (a) 不同薄膜的光学吸收特性曲线; (b) (αhν)2关系曲线

    Fig. 3.  UV-vis absorbance spectrum: (a) Optical absorption characteristics curves of different thin films; (b) the relationship of (αhν)2 and .

    图 4  在黑暗和254 nm紫外光照条件下, 不同结构β-Ga2O3紫外光电探测器的I-V特性曲线(对数坐标)(插图为引入氧化铪后器件等效电路图)

    Fig. 4.  I-V curves (logarithmic coordinate) of different devices with and without 254 nm UV light irradiation (Inset is the equivalent circuit of the device after the insertion of HfO2).

    图 5  三个器件的光谱响应

    Fig. 5.  Spectral response of three devices.

    图 6  (a) 50 V偏压下, 光电流与入射光功率强度的对应关系; (b) 1000 μW/cm2的254 nm紫外光照射下, 线性动态范围与外部偏置电压的对应关系

    Fig. 6.  (a) Relationship of photocurrent and light intensity at 50 V bias; (b) linear dynamic range vs. external bias voltage under 254 nm light illumination with an intensity of 1000 μW/cm2.

    图 7  在50 V偏置电压下, 三种不同结构器件的性能参数 (a) PDCR, (b) R, (c) EQE和(d) D*随入射光强的变化曲线

    Fig. 7.  (a) PDCR and (b) R and (c) EQE and (d) D* of the photodetectors replying on the light intensity under 50 V bias voltage.

    图 8  入射光强固定在500 μW/cm, 三种不同结构器件的性能参数(a) PDCR, (b) R, (c) EQE和(d) D*随偏置电压的变化

    Fig. 8.  (a) PDCR, (b) R, (c) EQE, and (d) D* of the photodetector varies with the bias voltage under 500 μW/cm2 illumination.

    图 9  (a)三种不同结构器件S1, S2, S3在20 V偏压下对254 nm紫外光的光响应I-t特征曲线; (b) S1, (c) S2和(d) S3器件上升及下降沿I-t拟合曲线

    Fig. 9.  (a) Photoresponse of three different structural devices (S1, S2, and S3) under 254 nm light at a 20 V bias; Rise and decay I-t fitting curves of (b) S1, (c) S2, and (d) S3 photodetectors.

    图 10  光电探测器在外加偏置电压下的能带结构及载流子转移过程 (a) 黑暗条件下的MSM结构探测器; (b) 254 nm紫外光照下的MSM结构探测器; (c) 黑暗条件下的MIS结构探测器; (d) 254 nm紫外光照下的MIS结构探测器. (e) 钝化前β-Ga2O3薄膜表面状态示意图; (f) 钝化后β-Ga2O3薄膜表面状态示意图

    Fig. 10.  Band structures and carriers transfer processes of photodetectors under applied bias voltage: (a) MSM photodetector in the dark; (b) MSM photodetector under 254 nm light; (c) MIS photodetector in the dark; (d) MIS photodetector under 254 nm light. The schematic diagrams in (e) and (f) show the surface states of a β-Ga2O3 film before and after passivation, respectively.

  • [1]

    Chen X, Ren F, Gu S, Ye J 2019 Photonics Res. 7 381Google Scholar

    [2]

    Kan H, Zheng W, Fu C, Lin R, Luo J, Huang F 2020 ACS Appl. Mater. Interfaces 12 6030Google Scholar

    [3]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [4]

    Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z, Li Y R 2017 ACS Photonics 4 2203Google Scholar

    [5]

    Qin Y, Li L, Zhao X, Tompa G S, Dong H, Jian G, He Q, Tan P, Hou X, Zhang Z, Yu S, Sun H, Xu G, Miao X, Xue K, Long S, Liu M 2020 ACS Photonics 7 812Google Scholar

    [6]

    Qin Y, Sun H, Long S, Tompa G S, Salagaj T, Dong H, He Q, Jian G, Liu Q, Lü H, Liu M 2019 IEEE Electron Device Lett. 40 1475Google Scholar

    [7]

    Wang Y H, Tang Y Q, Li H R, Yang Z B, Zhang Q Y, He Z B, Huang X, Wei X H, Tang W H, Huang W, Wu Z P 2021 ACS Photonics 8 2256Google Scholar

    [8]

    Hu D, Wang Y, Wang Y, Huan W, Dong X, Yin J 2022 Mater. Lett. 312 131653Google Scholar

    [9]

    Liu S, Jiao S, Lu H, Nie Y, Gao S, Wang D, Wang J, Zhao L 2022 J. Alloys Compd. 890 161827Google Scholar

    [10]

    Wang Y, Li H, Cao J, Shen J, Zhang Q, Yang Y, Dong Z, Zhou T, Zhang Y, Tang W, Wu Z 2021 ACS Nano 15 16654Google Scholar

    [11]

    Hou X, Zhao X, Zhang Y, Zhang Z, Liu Y, Qin Y, Tan P, Chen C, Yu S, Ding M, Xu G, Hu Q, Long S 2022 Adv. Mater. 34 2106923Google Scholar

    [12]

    Cui S, Mei Z, Zhang Y, Liang H, Du X 2017 Adv. Opt. Mater. 5 1700454Google Scholar

    [13]

    Zhou H, Cong L, Ma J, Chen M, Song D, Wang H, Li P, Li B, Xu H, Liu Y 2020 J. Alloys Compd. 847 156536Google Scholar

    [14]

    Han Z, Liang H, Huo W, Zhu X, Du X, Mei Z 2020 Adv. Opt. Mater. 8 1901833Google Scholar

    [15]

    Chen C H 2013 Jpn. J. Appl. Phys. 52 08JF08Google Scholar

    [16]

    Sheoran H, Kumar V, Singh R 2022 ACS Appl. Electron. Mater. 4 2589Google Scholar

    [17]

    Arora K, Goel N, Kumar M, Kumar M 2018 ACS Photonics 5 2391Google Scholar

    [18]

    Qian L X, Gu Z, Huang X, Liu H, Lü Y, Feng Z, Zhang W 2021 ACS Appl. Mater. Interfaces 13 40837Google Scholar

    [19]

    Ma J, Lee O, Yoo G 2019 IEEE J. Electron Devices Society 7 512Google Scholar

    [20]

    Young S J, Ji L W, Chang S J, Liang S H, Lam K T, Fang T H, Chen K J, Du X L, Xue Q K 2008 Sens. Actuators, A 141 225Google Scholar

    [21]

    Wang W J, Shan C X, Zhu H, Ma F Y, Shen D Z, Fan X W, Choy K L 2010 J. Phys. D:Appl. Phys. 43 045102Google Scholar

    [22]

    Seol J H, Lee G H, Hahm S H 2018 IEEE Sens. J. 18 4477Google Scholar

    [23]

    Yin J, Liu L, Zang Y, Ying A, Hui W, Jiang S, Zhang C, Yang T, Chueh Y L, Li J, Kang J 2021 Light:Sci. Appl. 10 113Google Scholar

    [24]

    Oshima T, Hashikawa M, Tomizawa S, Miki K, Oishi T, Sasaki K, Kuramata A 2018 Appl. Phys. Exp. 11 112202Google Scholar

    [25]

    刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华 2022 物理学报 71 208501Google Scholar

    Liu Z, Li L, Zhi Y S, Du L, Fang J P, Li S, Yu J G, Zhang M L, Yang L L, Zhang S H, Guo Y F, Tang W H 2022 Acta Phys. Sin. 71 208501Google Scholar

    [26]

    Li S, Guo D, Li P, Wang X, Wang Y, Yan Z, Liu Z, Zhi Y, Huang Y, Wu Z, Tang W 2019 ACS Appl. Mater. Interfaces 11 35105Google Scholar

    [27]

    Wang Y, Yang Z, Li H, Li S, Zhi Y, Yan Z, Huang X, Wei X, Tang W, Wu Z 2020 ACS Appl. Mater. Interfaces 12 47714Google Scholar

    [28]

    Dou L T, Yang Y (Micheal), You J B, Hong Z R, Chang W H, Li Ga, Yang Y 2014 Nat. Commun. 5 5404Google Scholar

    [29]

    雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明 2021 物理学报 70 027801Google Scholar

    Lei T, Lü W M, Lü W X, Cui B Y, Hu R, Shi W H, Zeng Z M 2021 Acta Phys. Sin. 70 027801Google Scholar

    [30]

    李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 物理学报 71 048501Google Scholar

    Li X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501Google Scholar

    [31]

    周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊 2021 物理学报 70 178503Google Scholar

    Zhou S R, Zhang H, Mo H L, Liu H W, Xiong Y Q, Li H L, Kong C Y, Ye L J, Li W J 2021 Acta Phys. Sin. 70 178503Google Scholar

  • [1] 宿冉, 奚昭颖, 李山, 张嘉汉, 姜明明, 刘增, 唐为华. 基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器. 物理学报, 2024, 73(11): 118502. doi: 10.7498/aps.73.20240267
    [2] 张裕, 刘瑞文, 张京阳, 焦斌斌, 王如志. 氧化镓悬臂式薄膜日盲探测器及其电弧检测应用. 物理学报, 2024, 73(9): 098501. doi: 10.7498/aps.73.20240186
    [3] 况丹, 徐爽, 史大为, 郭建, 喻志农. 基于铝纳米颗粒修饰的非晶氧化镓薄膜日盲紫外探测器. 物理学报, 2023, 72(3): 038501. doi: 10.7498/aps.72.20221476
    [4] 落巨鑫, 高红丽, 邓金祥, 任家辉, 张庆, 李瑞东, 孟雪. 退火温度对氧化镓薄膜及紫外探测器性能的影响. 物理学报, 2023, 72(2): 028502. doi: 10.7498/aps.72.20221716
    [5] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管. 物理学报, 2022, 71(3): 037301. doi: 10.7498/aps.71.20211536
    [6] 刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华. 具有大光电导增益的氧化镓薄膜基深紫外探测器阵列. 物理学报, 2022, 71(20): 208501. doi: 10.7498/aps.71.20220859
    [7] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211536
    [8] 龙泽, 夏晓川, 石建军, 刘俊, 耿昕蕾, 张赫之, 梁红伟. 基于机械剥离β-Ga2O3的Ni/Au垂直结构肖特基器件的温度特性. 物理学报, 2020, 69(13): 138501. doi: 10.7498/aps.69.20200424
    [9] 彭超, 恩云飞, 李斌, 雷志锋, 张战刚, 何玉娟, 黄云. 绝缘体上硅金属氧化物半导体场效应晶体管中辐射导致的寄生效应研究. 物理学报, 2018, 67(21): 216102. doi: 10.7498/aps.67.20181372
    [10] 刘虎林, 王兴, 田进寿, 赛小锋, 韦永林, 温文龙, 王俊锋, 徐向晏, 王超, 卢裕, 何凯, 陈萍, 辛丽伟. 高分辨紫外电子轰击互补金属氧化物半导体器件的实验研究. 物理学报, 2018, 67(1): 014209. doi: 10.7498/aps.67.20171729
    [11] 张勇, 施毅敏, 包优赈, 喻霞, 谢忠祥, 宁锋. 表面钝化效应对GaAs纳米线电子结构性质影响的第一性原理研究. 物理学报, 2017, 66(19): 197302. doi: 10.7498/aps.66.197302
    [12] 檀满林, 周丹丹, 符冬菊, 张维丽, 马清, 李冬霜, 陈建军, 张化宇, 王根平. 基于BiFeO3/ITO复合膜表面钝化的黑硅太阳电池性能研究. 物理学报, 2017, 66(16): 167701. doi: 10.7498/aps.66.167701
    [13] 赵星, 梅博, 毕津顺, 郑中山, 高林春, 曾传滨, 罗家俊, 于芳, 韩郑生. 0.18 m部分耗尽绝缘体上硅互补金属氧化物半导体电路单粒子瞬态特性研究. 物理学报, 2015, 64(13): 136102. doi: 10.7498/aps.64.136102
    [14] 祁晓萌, 彭文博, 赵小龙, 贺永宁. 基于高阻ZnO薄膜的光电导型紫外探测器. 物理学报, 2015, 64(19): 198501. doi: 10.7498/aps.64.198501
    [15] 胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅. 紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究. 物理学报, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [16] 陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军. GaN基发光二极管衬底材料的研究进展. 物理学报, 2014, 63(6): 068103. doi: 10.7498/aps.63.068103
    [17] 马海林, 苏庆. 氧分压对溅射制备氧化镓薄膜结构及光学带隙的影响. 物理学报, 2014, 63(11): 116701. doi: 10.7498/aps.63.116701
    [18] 潘惠平, 成枫锋, 李琳, 洪瑞华, 姚淑德. 蓝宝石衬底上生长的Ga2+xO3-x薄膜的结构分析. 物理学报, 2013, 62(4): 048801. doi: 10.7498/aps.62.048801
    [19] 何悦, 窦亚楠, 马晓光, 陈绍斌, 褚君浩. 热原子层沉积氧化铝对硅的钝化性能及热稳定性. 物理学报, 2012, 61(24): 248102. doi: 10.7498/aps.61.248102
    [20] 刘坤, 褚君浩, 陈诗伟, 赵军, 汤定元. 金属-绝缘体-半导体器件红外探测机理研究. 物理学报, 1995, 44(7): 1137-1140. doi: 10.7498/aps.44.1137
计量
  • 文章访问数:  4792
  • PDF下载量:  207
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-20
  • 修回日期:  2022-12-14
  • 上网日期:  2023-01-12
  • 刊出日期:  2023-05-05

/

返回文章
返回