搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pt/La0.67Sr0.33MnO3异质结中的反常霍尔效应

扈仕林 刘均华 邓志雄 肖文 杨瞻 陈凯 廖昭亮

引用本文:
Citation:

Pt/La0.67Sr0.33MnO3异质结中的反常霍尔效应

扈仕林, 刘均华, 邓志雄, 肖文, 杨瞻, 陈凯, 廖昭亮

Anomalous Hall effect in Pt/La0.67Sr0.33MnO3 heterojunctions

Hu Shi-Lin, Liu Jun-Hua, Deng Zhi-Xiong, Xiao Wen, Yang Zhan, Chen Kai, Liao Zhao-Liang
PDF
HTML
导出引用
  • 非磁/铁磁异质结构中存在很多有趣的演生现象, 特别是, 铂/铁磁异质结构中的反常霍尔效应是一个研究热点. 采用脉冲激光沉积技术和射频磁控溅射技术制备出具有原子级接触界面的铂/锰酸锶镧异质结, 并对异质结的电输运性能进行了系统的研究. 实验发现, 铂/锰酸锶镧异质结中存在由铂贡献的反常霍尔效应, 这是由磁近邻效应诱导铂表现出铁磁性造成的. 反常霍尔电阻随着温度的降低而急剧增加, 并且在低于 40 K时改变符号. 反常霍尔电阻随铂厚度的增加而急剧降低, 证实了铂的铁磁性起源于异质结界面. 此外, 异质结在低外加磁场下可能产生了拓扑霍尔效应, 这是由异质结界面处的Dzyaloshinskii-Moriya相互作用诱导产生手性磁畴壁结构引起的. 上述研究结果为进一步理解非磁/铁磁异质结构中的电子自旋和电荷输运之间的相互作用提供了实验基础.
    Many emergent and novel phenomena occur in nonmagnetic/ferromagnet heterostructures. In particular, Pt/ferromagnet heterostructures where the Pt has strong spin-orbit coupling and thus can convert spin current into charge current, has attracted a great attention recently. The anomalous Hall effect (AHE) has been found in many Pt/ferromagnet heterostructures. However, the underlying physics remains elusive, so it is necessary to find more heterostructures in order to provide more experimental data. In this work, we investigate anomalous Hall resistances (AHRs) in Pt thin films sputtered on epitaxial La0.67Sr0.33MnO3 (LSMO) ferromagnetic films. High-quality Pt/LSMO heterojunctions are fabricated by pulsed laser deposition and RF-magnetron sputtering. The physical properties of LSMO films are characterized by the measurements of magnetic and transport properties. The AHR mainly contributed by Pt in the Pt/LSMO heterojunction increases sharply with temperature decreasing and changes its sign below 40 K. Furthermore, the AHR decreases sharply with the increase of Pt thickness. Those facts suggest that the ferromagnetism of Pt originates from interface due to magnetic proximity effect. Interestingly, this heterojunction can exhibit possible signal of topological Hall effect under low applied magnetic field. The above results provide an experimental basis for further understanding the interactions between electron spin and charge transport in nonmagnetic/ferromagnetic heterostructures.
      通信作者: 廖昭亮, zliao@ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974325)和中央高校基本科研业务费专项资金(批准号: WK2030000035)资助的课题.
      Corresponding author: Liao Zhao-Liang, zliao@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11974325) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. WK2030000035).
    [1]

    Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790Google Scholar

    [2]

    Jedema F J, Filip A T, Wees B J V 2001 Nature 410 345Google Scholar

    [3]

    Heinrich B, Tserkovnyak Y, Woltersdorf G, Brataas A, Urban R, Bauer G E W 2003 Phys. Rev. Lett. 90 187601Google Scholar

    [4]

    Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S, Saitoh E 2010 Nature 464 262Google Scholar

    [5]

    Heinrich B, Burrowes C, Montoya E, Kardasz B, Girt E, Song Y Y, Sun Y Y, Wu M Z 2011 Phys. Rev. Lett. 107 066604Google Scholar

    [6]

    Rezende S M, Rodriguez S R L, Soares M M, Vilela L L H, Ley D D, Azevedo A 2013 Appl. Phys. Lett. 102 012402Google Scholar

    [7]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778Google Scholar

    [8]

    Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, Ieda J, Ota T, Kajiwara Y, Umezawa H, Kawai H, Bauer G E W, Maekawa S, Saitoh E 2010 Nat. Mater. 9 894Google Scholar

    [9]

    Weng H M, Yu R, Hu X, Dai X, Fang Z 2015 Adv. Phys. 64 03227Google Scholar

    [10]

    Takahashi S, Maekawa S 2008 Sci. Technol. Adv. Mater. 9 014105Google Scholar

    [11]

    Miao B F, Huang S Y, Qu D, Chien C L 2014 Phys. Rev. Lett. 112 236601Google Scholar

    [12]

    Althammer M, Meyer S, Nakayama H, Schreier M, Altmannshofer S, Weiler M, Huebl H, Geprags S, Opel M, Gross R, Meier D, Klewe C, Kuschel T, Schmalhorst J M, Reiss G, Shen L M, Gupta A, Chen Y T, Bauer G E W, Saitoh E, Goennenwein S T B 2013 Phys. Rev. B 87 224401Google Scholar

    [13]

    Lu Y M, Choi Y, Ortega C M, Cheng X M, Cai J W, Huang S Y, Sun L, Chien C L 2013 Phys. Rev. Lett. 110 147207Google Scholar

    [14]

    Isasa M, Pinto A B, Velez S, Golmar F, Sanchez F, Hueso L E, Fontcuberta J, Casanova F 2014 Appl. Phys. Lett. 105 142402Google Scholar

    [15]

    Shang T, Zhan Q F, Yang H L, Zuo Z H, Xie Y L, Zhang Y, Liu L P, Wang B M, Wu Y H, Zhang S, Li R W 2015 Phys. Rev. B 92 165114Google Scholar

    [16]

    Liao Z L, Li F M, Gao P, Li L, Guo J D, Pan X Q, Jin R, Plummer E W, Zhang J D 2015 Phys. Rev. B 92 125123Google Scholar

    [17]

    Uchida K, Qiu Z Y, Kikkawa T, Lguchi R L, Saitoh E 2015 Appl. Phys. Lett. 106 052405Google Scholar

    [18]

    Putter S, Geprags S, Schlitz R, Althammer M, Erb A, Gross R, Goennenwein S T B 2017 Appl. Phys. Lett. 110 012403Google Scholar

    [19]

    Biswas A, Yang C H, Ramesh R, Jeong M H 2017 Prog. Surf. Sci. 92 02117Google Scholar

    [20]

    Peng R, Xu H C, Xia M, Zhao J F, Xie X, Xu D F, Xie B P, Feng D L 2014 Appl. Phys. Lett. 104 081606Google Scholar

    [21]

    Snyder G J, Hiskes R, DiCarolis S, Beasley M R, Geballe T H 1996 Phys. Rev. B 53 14434Google Scholar

    [22]

    Huang S Y, Fan X, Qu D, Chen Y P, Wang W G, Wu J, Chen T Y, Xiao J Q, Chien C L 2012 Phys. Rev. Lett. 109 107204Google Scholar

    [23]

    Soumyanarayanan A, Raju M, Oyarce A L G, Tan A K C, Im M Y, Petrovi A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F, Panagopoulos C 2017 Nat. Mater. 16 898Google Scholar

    [24]

    Zhang S, Zhang S S L 2009 Phys. Rev. Lett. 102 086601Google Scholar

    [25]

    Li Y, Kanazawa N, Yu X Z, Tsukazaki A, Kawasaki M, Ichikawa M, Jin X F, Kagawa F, Tokura Y 2013 Phys. Rev. Lett. 110 117202Google Scholar

    [26]

    Belabbes A, Bihlmayer G, Bechstedt F, Blügel S, Manchon A 2016 Phys. Rev. Lett. 117 247202Google Scholar

    [27]

    Meng K K, Zhao X P, Liu P F, Liu Q, Wu Y, Li Z P, Chen J K, Miao J, Xu X G, Zhao J H, Jiang Y 2018 Phys. Rev. B 97 060407Google Scholar

  • 图 1  LSMO薄膜生长 (a) RHEED周期振荡; (b) 薄膜生长前的RHEED衍射图; (c) 薄膜生长后的RHEED衍射图

    Fig. 1.  The LSMO thin film growth: (a) RHEED oscillation; (b) RHEED pattern before film growth; (c) RHEED pattern after film growth.

    图 2  形貌表征 (a) STO (001)衬底AFM图; (b) LSMO (40 u.c.)薄膜AFM图; (c) Pt(2 nm)/LSMO(40 u.c.)薄膜AFM图; (d)和(e)分别为(b)和(c)中薄膜表面线扫描图

    Fig. 2.  Morphology characterization: (a) AFM image of STO (001) substrate; (b) AFM image of LSMO (40 u.c.) film; (c) AFM image of Pt(2 nm)/LSMO(40 u.c.) film; (d) line-scan of the LSMO film in (b); (e) line-scan of the Pt/LSMO film in (c).

    图 3  结构表征 (a) Pt(6 nm)/LSMO(40 u.c.)薄膜的2θ-ω扫描; (b)为(a)中(002)衍射峰的放大图, 插图为LSMO薄膜(002)衍射峰的摇摆曲线; (c) Pt/LSMO薄膜在(103)衍射峰附近的倒易空间图; (d) Pt/LSMO薄膜的XRR谱, 拟合的红线与实验数据相符

    Fig. 3.  Structure characterization: (a) 2θ-ω scan of Pt(6 nm)/LSMO(40 u.c.) thin films; (b) enlarged view of the (002) diffraction peak in panel (a), and the inset is a rocking curve of LSMO film around (002) diffraction peak; (c) reciprocal space map of Pt/ LSMO film around (103) diffraction peak; (d) XRR spectrum of Pt/LSMO film, and the red line is a fit to the experimental data

    图 4  (a) LSMO (40 u.c.)薄膜的磁化强度的温度依赖性, 插图为磁化强度对温度的一阶微分; (b) LSMO (40 u.c.)薄膜不同温度下的磁化强度的场依赖性, 插图为3 K时曲线的中心放大图

    Fig. 4.  (a) Temperature dependence of magnetization of LSMO (40 u.c.) films, the inset is the first derivative of magnetization versus temperature; (b) field dependence of the magnetization of LSMO (40 u.c.) films at different temperatures, and the inset is an enlarged view of the curve at 3 K.

    图 5  LSMO(40 u.c.)薄膜与Pt(2 nm)/LSMO(40 u.c.)薄膜电阻的温度依赖性

    Fig. 5.  Temperature dependence of resistance of LSMO (40 u.c.) film and Pt(2 nm)/LSMO(40 u.c.) film.

    图 6  (a) LSMO(40 u.c.)薄膜和(b) Pt(2 nm)/LSMO(40 u.c.)薄膜在不同温度下的RAHR, 图(a)插图为2 K时测量的LSMO薄膜的Rxy

    Fig. 6.  RAHR of (a) LSMO (40 u.c.) film and (b) Pt(2 nm)/LSMO(40 u.c.) film at different temperatures. The inset in panel (a) is Rxy of the LSMO film measured at 2 K.

    图 7  (a) 在2 K时不同Pt厚度的Pt/LSMO(40 u.c.)薄膜的RAHR, 其中4和6 nm曲线的RAHR分别扩大了4倍和5倍; (b) Pt(6 nm)/LSMO(40 u.c.)薄膜在不同温度下的RAHR

    Fig. 7.  (a) RAHR of Pt/LSMO(40 u.c.) film with different Pt thickness, which were measured at 2 K. RAHR of the 4 and 6 nm curves are enlarged by a factor of four and five, respectively; (b) RAHR of Pt(6 nm)/LSMO(40 u.c.) films at different temperatures.

  • [1]

    Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790Google Scholar

    [2]

    Jedema F J, Filip A T, Wees B J V 2001 Nature 410 345Google Scholar

    [3]

    Heinrich B, Tserkovnyak Y, Woltersdorf G, Brataas A, Urban R, Bauer G E W 2003 Phys. Rev. Lett. 90 187601Google Scholar

    [4]

    Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S, Saitoh E 2010 Nature 464 262Google Scholar

    [5]

    Heinrich B, Burrowes C, Montoya E, Kardasz B, Girt E, Song Y Y, Sun Y Y, Wu M Z 2011 Phys. Rev. Lett. 107 066604Google Scholar

    [6]

    Rezende S M, Rodriguez S R L, Soares M M, Vilela L L H, Ley D D, Azevedo A 2013 Appl. Phys. Lett. 102 012402Google Scholar

    [7]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778Google Scholar

    [8]

    Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, Ieda J, Ota T, Kajiwara Y, Umezawa H, Kawai H, Bauer G E W, Maekawa S, Saitoh E 2010 Nat. Mater. 9 894Google Scholar

    [9]

    Weng H M, Yu R, Hu X, Dai X, Fang Z 2015 Adv. Phys. 64 03227Google Scholar

    [10]

    Takahashi S, Maekawa S 2008 Sci. Technol. Adv. Mater. 9 014105Google Scholar

    [11]

    Miao B F, Huang S Y, Qu D, Chien C L 2014 Phys. Rev. Lett. 112 236601Google Scholar

    [12]

    Althammer M, Meyer S, Nakayama H, Schreier M, Altmannshofer S, Weiler M, Huebl H, Geprags S, Opel M, Gross R, Meier D, Klewe C, Kuschel T, Schmalhorst J M, Reiss G, Shen L M, Gupta A, Chen Y T, Bauer G E W, Saitoh E, Goennenwein S T B 2013 Phys. Rev. B 87 224401Google Scholar

    [13]

    Lu Y M, Choi Y, Ortega C M, Cheng X M, Cai J W, Huang S Y, Sun L, Chien C L 2013 Phys. Rev. Lett. 110 147207Google Scholar

    [14]

    Isasa M, Pinto A B, Velez S, Golmar F, Sanchez F, Hueso L E, Fontcuberta J, Casanova F 2014 Appl. Phys. Lett. 105 142402Google Scholar

    [15]

    Shang T, Zhan Q F, Yang H L, Zuo Z H, Xie Y L, Zhang Y, Liu L P, Wang B M, Wu Y H, Zhang S, Li R W 2015 Phys. Rev. B 92 165114Google Scholar

    [16]

    Liao Z L, Li F M, Gao P, Li L, Guo J D, Pan X Q, Jin R, Plummer E W, Zhang J D 2015 Phys. Rev. B 92 125123Google Scholar

    [17]

    Uchida K, Qiu Z Y, Kikkawa T, Lguchi R L, Saitoh E 2015 Appl. Phys. Lett. 106 052405Google Scholar

    [18]

    Putter S, Geprags S, Schlitz R, Althammer M, Erb A, Gross R, Goennenwein S T B 2017 Appl. Phys. Lett. 110 012403Google Scholar

    [19]

    Biswas A, Yang C H, Ramesh R, Jeong M H 2017 Prog. Surf. Sci. 92 02117Google Scholar

    [20]

    Peng R, Xu H C, Xia M, Zhao J F, Xie X, Xu D F, Xie B P, Feng D L 2014 Appl. Phys. Lett. 104 081606Google Scholar

    [21]

    Snyder G J, Hiskes R, DiCarolis S, Beasley M R, Geballe T H 1996 Phys. Rev. B 53 14434Google Scholar

    [22]

    Huang S Y, Fan X, Qu D, Chen Y P, Wang W G, Wu J, Chen T Y, Xiao J Q, Chien C L 2012 Phys. Rev. Lett. 109 107204Google Scholar

    [23]

    Soumyanarayanan A, Raju M, Oyarce A L G, Tan A K C, Im M Y, Petrovi A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F, Panagopoulos C 2017 Nat. Mater. 16 898Google Scholar

    [24]

    Zhang S, Zhang S S L 2009 Phys. Rev. Lett. 102 086601Google Scholar

    [25]

    Li Y, Kanazawa N, Yu X Z, Tsukazaki A, Kawasaki M, Ichikawa M, Jin X F, Kagawa F, Tokura Y 2013 Phys. Rev. Lett. 110 117202Google Scholar

    [26]

    Belabbes A, Bihlmayer G, Bechstedt F, Blügel S, Manchon A 2016 Phys. Rev. Lett. 117 247202Google Scholar

    [27]

    Meng K K, Zhao X P, Liu P F, Liu Q, Wu Y, Li Z P, Chen J K, Miao J, Xu X G, Zhao J H, Jiang Y 2018 Phys. Rev. B 97 060407Google Scholar

  • [1] 张静娴, 保明睿, 叶飞, 刘佳, 成龙, 翟晓芳. SrRuO3超薄膜制备条件和拓扑霍尔效应的关联. 物理学报, 2023, 72(9): 096802. doi: 10.7498/aps.72.20221854
    [2] 杨萌, 白鹤, 李刚, 朱照照, 竺云, 苏鉴, 蔡建旺. 垂直各向异性Ho3Fe5O12薄膜的外延生长与其异质结构的自旋输运. 物理学报, 2021, 70(7): 077501. doi: 10.7498/aps.70.20201737
    [3] 俱海浪, 王洪信, 程鹏, 李宝河, 陈晓白, 刘帅, 于广华. 磁性多层膜CoFeB/Ni的垂直磁各向异性研究. 物理学报, 2016, 65(24): 247502. doi: 10.7498/aps.65.247502
    [4] 俱海浪, 向萍萍, 王伟, 李宝河. MgO/Pt界面对增强Co/Ni多层膜垂直磁各向异性及热稳定性的研究. 物理学报, 2015, 64(19): 197501. doi: 10.7498/aps.64.197501
    [5] 俱海浪, 李宝河, 吴志芳, 张璠, 刘帅, 于广华. Co/Ni多层膜垂直磁各向异性的研究. 物理学报, 2015, 64(9): 097501. doi: 10.7498/aps.64.097501
    [6] 陈城钊, 郑元宇, 黄诗浩, 李成, 赖虹凯, 陈松岩. 硅基低位错密度厚锗外延层的UHV/CVD法生长. 物理学报, 2012, 61(7): 078104. doi: 10.7498/aps.61.078104
    [7] 刘娜, 王海, 朱涛. CoFeB/Pt多层膜的垂直磁各向异性研究. 物理学报, 2012, 61(16): 167504. doi: 10.7498/aps.61.167504
    [8] 苏少坚, 汪巍, 张广泽, 胡炜玄, 白安琪, 薛春来, 左玉华, 成步文, 王启明. Si(001)衬底上分子束外延生长Ge0.975Sn0.025合金薄膜. 物理学报, 2011, 60(2): 028101. doi: 10.7498/aps.60.028101
    [9] 乌晓燕, 孔明, 李戈扬, 赵文济. Si3N4在h-AlN上的晶体化与AlN/Si3N4纳米多层膜的超硬效应. 物理学报, 2009, 58(4): 2654-2659. doi: 10.7498/aps.58.2654
    [10] 何 萌, 刘国珍, 仇 杰, 邢 杰, 吕惠宾. 用激光分子束外延在Si衬底上外延生长高质量的TiN薄膜. 物理学报, 2008, 57(2): 1236-1240. doi: 10.7498/aps.57.1236
    [11] 李美亚, 汪 晶, 刘 军, 于本方, 郭冬云, 赵兴中. YBa2Cu3O7-x涂层导体的外延生长和性能对CeO2缓冲层的依赖性. 物理学报, 2008, 57(5): 3132-3137. doi: 10.7498/aps.57.3132
    [12] 喻利花, 董松涛, 董师润, 许俊华. AlN/Si3N4纳米多层膜的外延生长与力学性能. 物理学报, 2008, 57(8): 5151-5158. doi: 10.7498/aps.57.5151
    [13] 喻利花, 董师润, 许俊华, 李戈扬. TaN/TiN和NbN/TiN纳米结构多层膜超硬效应及超硬机理研究. 物理学报, 2008, 57(11): 7063-7068. doi: 10.7498/aps.57.7063
    [14] 赵文济, 董云杉, 岳建岭, 李戈扬. Si3N4的晶体化和ZrN/Si3N4纳米多层膜的超硬效应. 物理学报, 2007, 56(1): 459-464. doi: 10.7498/aps.56.459
    [15] 周耐根, 周 浪, 杜丹旭. 面心立方晶体外延膜沉积生长中失配位错的结构与形成过程. 物理学报, 2006, 55(1): 372-377. doi: 10.7498/aps.55.372
    [16] 刘 艳, 董云杉, 岳建岭, 李戈扬. 反应磁控溅射ZrN/AlON纳米多层膜的晶体生长和超硬效应. 物理学报, 2006, 55(11): 6013-6019. doi: 10.7498/aps.55.6013
    [17] 孔 明, 魏 仑, 董云杉, 李戈扬. TiN/Al2O3纳米多层膜的共格外延生长及超硬效应. 物理学报, 2006, 55(2): 770-775. doi: 10.7498/aps.55.770
    [18] 魏 仑, 梅芳华, 邵 楠, 李戈扬, 李建国. TiN/SiO2纳米多层膜的晶体生长与超硬效应. 物理学报, 2005, 54(4): 1742-1748. doi: 10.7498/aps.54.1742
    [19] 王剑屏, 郝跃, 彭军, 朱作云, 张永华. 蓝宝石衬底上异质外延生长碳化硅薄膜的研究. 物理学报, 2002, 51(8): 1793-1797. doi: 10.7498/aps.51.1793
    [20] 叶健松, 胡晓君. 超薄膜外延生长的Monte Carlo模拟. 物理学报, 2002, 51(5): 1108-1112. doi: 10.7498/aps.51.1108
计量
  • 文章访问数:  4173
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-22
  • 修回日期:  2022-10-17
  • 上网日期:  2022-10-27
  • 刊出日期:  2023-05-05

/

返回文章
返回