Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Anisotropic energy funneling effect in wrinkled monolayer GeSe

Liu JunJie Zuo HuiLing Tan Xin Dong JianSheng

Citation:

Anisotropic energy funneling effect in wrinkled monolayer GeSe

Liu JunJie, Zuo HuiLing, Tan Xin, Dong JianSheng
PDF
Get Citation
  • Two-dimensional materials with tunable wrinkled structures opening up new avenue to modulate their electronic and optoelectronic properties. However, the formation mechanisms of wrinkles and their influences on the band structures and associated properties remains unclear. Here, we investigate the strain distributions, bandgap, and anisotropic energy funneling of wrinkled monolayer GeSe and their evolution with the wrinkle wavelength based on the atomic-bond-relaxation approach and continuum medium mechanics. We find that the top and valley regions of wrinkled monolayer GeSe exhibit tensile and compressive strains, respectively, and the strain increases with decreasing wrinkle wavelength. Moreover, the periodic undulation strain in the wrinkles can lead to continuously adjustable bandgaps and band edges in wrinkled monolayer GeSe. For zigzag wrinkled monolayer GeSe, when the wrinkle wavelength is large, the conduction band minimum (valence band maximum) continuously decreases (increases) from the top to the valley, forming an energy funneling. As a result, the excitons accumulate in the valley of wrinkles, and their accumulation ability increases with decreasing wrinkle wavelength. However, as the wavelength further decreases, the energy funneling will disappear, resulting in the excitons to part accumulate at the top of wrinkles and another part to accumulate at the valley of wrinkles. The critical wavelength for disappearance of energy funneling of zigzag wrinkled GeSe is 106nm. The physical origin is that when the top strain exceeds 4%, the bandgap will decrease. Due to the monotonic variation of bandgap with strain, the energy funneling effect of armchair wrinkled monolayer GeSe is still retained when the wavelength is reduced to 80 nm, and the accumulation of excitons is further enhanced. Our results demonstrate that the energy funneling effect induced by nonuniform can realize excitons accumulation in one material without the need for p-n junctions, which is of great benefit to collection of photogenerated excitons. Therefore, the proposed theory not only clarifies the physical mechanism regarding the anisotropic energy funneling effect of wrinkled monolayer GeSe, but also provides a new avenue to design next-generation optoelectronic devices.
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306666

    [2]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105136805

    [3]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9372

    [4]

    Zhao H Q, Mao Y L, Mao X, Shi X, Xu C S, Wang C X, Zhang S M, Zhou D H 2018 Adv. Funct. Mater. 281704855

    [5]

    Zhou X, Hu X Z, Jin B, Yu J, Liu K L, Li H Q, Zhai T Y 2018 Adv. Sci. 51800478

    [6]

    Hu Y H, Zhang S L, Sun S F, Xie M Q, Cai B, Zeng H B 2015 Appl. Phys. Lett. 107122107

    [7]

    Xia C X, Du J, Huang X W, Xiao W B, Xiong W Q, Wang T X, Wei Z M, Jia Y, Shi J J, Li J B 2018 Phys. Rev. B 97115416

    [8]

    Xu Y F, Zhang H, Shao H Z, Ni G, Li J, Lu H L, Zhang R J, Peng Bo, Zhu Y Y, Zhu H Y, Soukoulis C M 2017 Phys. Rev. B 96245421

    [9]

    Kong X, Deng J K, Li L, Liu Y L, Ding X D, Sun J, Liu J Z 2018 Phys. Rev. B 98184104

    [10]

    Mao Y L, Xu C S, Yuan J M, Zhao H Q 2019 J. Mater. Chem. A 711265

    [11]

    Lu Q L, Yang W H, Xiong F B, Lin H F, Zhuang Q Q 2020 Acta Phys. Sin. 69196801[卢群林, 杨伟煌, 熊飞兵, 林海峰, 庄芹芹2020物理学报69196801]

    [12]

    Muhammad Z, Li Y L, Abbas G, Usman M, Sun Z, Zhang Y, Lv Z Y, Wang Y, Zhao W S 2022 Adv. Electron. Mater. 82101112

    [13]

    Huang L, Wu F G, Li J B 2016 J. Chem. Phys. 144114708

    [14]

    Li Z B, Liu X S, Wang X, Yang Y, Liu S C, Shi W, Li Y, Xing X B, Xue D J, Hu J S 2020 Phys. Chem. Chem. Phys. 22914

    [15]

    Zuo B Min, Yuan J M, Feng Z, Mao Y L 2019 Acta Phys. Sin. 68113103[左博敏, 袁健美, 冯志, 毛宇亮2019物理学报68113103]

    [16]

    Guo G X, Bi G 2018 Micro Nano Lett. 13600

    [17]

    Wang J J, Zhao Y F, Zheng J D, Wang X T, Deng X, Guan Z, Ma R R Zhong Ni,Yue F Y, Wei Z M, Xiang P H, Duan C G 2021 Phys. Chem. Chem. Phys. 2326997

    [18]

    Li Y, Ma K, Fan X, Liu F S, Li J Q, Xie H P 2020 Appl. Sur. Sci. 521146256

    [19]

    Feng J, Qian X F, Huang C W, Li J 2012 Nat. Photonics 6866

    [20]

    Li H, Contryman A W, Qian X F, Ardakani S Mo, Gong Y J, Wang X L, Weisse J M, Lee C H, Zhao J H, Ajayan P M, Li Ju, Manoharan H C, Zheng X L 2015 Nat. Commun. 67381

    [21]

    Jose P S, Parente V, Guinea F, Roldán R, Prada E 2016 Phys. Rev. X 6031046

    [22]

    Lam N H, Nguyen P, Cho S, Kim J 2023 Surf. Sci. 730122251

    [23]

    Zheng J D, Zhao Y F, Bao Z Q, Shen Y H, Guan Z, Zhong N, Yue F Yu, Xiang P H, Duan C G 20222D Mater. 9035005

    [24]

    Harats M G, Kirchhof J N, Qiao M X, Greben K, Bolotin K I 2020 Nat. Photonics 14324

    [25]

    Lee J, Yun S J, Seo C, Cho K, Kim T S, An G H, Kang K, Lee H S, Kim J Y 2020 Nano Lett. 2143

    [26]

    Wang J W, Han M J, Wang Q, Ji Y Q, Zhang X, Shi R, Wu Z F, Zhang L, Amini A, Guo L, Wang N, Lin J H, Cheng C 2021 ACS Nano 156633

    [27]

    Hao S J, Hao Y L, Li J, Wang K Y, Fan C, Zhang S W, Wei Y H, Hao G L 2024 Appl. Phys. Lett. 125072102

    [28]

    Dastgeer G, Afzal A M, Nazir G, Sarwar N 2021 Adv. Mater. Interfaces 82100705

    [29]

    Song Q C, An M, Chen X D, Peng Z, Zang J F, Yang N 2016 Nanoscale 814943

    [30]

    Ouyang G, Wang C X, Yang G W 2009 Chem. Rev. 1094221

    [31]

    Zhu Z M, Zhang A, Ouyang G, Yang G W 2011 Appl. Phys. Lett. 98263112

    [32]

    Dong J S, Zhao Y P, Ouyang G, Yang G W 2022 Appl. Phys. Lett. 120080501

    [33]

    Huang R 2005 J. Mech. Phys. Solids 5363

    [34]

    Jiang H Q, Khang D Y, Song J Z, Sun Y G, Huang Y G, Rogers J A 2007 Proc. Natl. Acad. Sci. 10415607

    [35]

    Khang D Y, Rogers J A, Lee H H 2008 Adv. Funct. Mater. 181

    [36]

    Iguiñiz N, Frisenda R, Bratschitsch R, Gomez A C 2019 Adv. Mater. 311807150

    [37]

    Guo Q L, Zhang M, Xue Z Y, Ye L, Wang G, Huang G S, Mei Y F, Wang X, Di Z F 2013 Appl. Phys. Lett. 103264102

    [38]

    Vellaa D, Bicoa J, Boudaoudb A, Romana B, Reis P M 2009 Proc. Natl. Acad. Sci. 10610901

    [39]

    Gomez A C, Roldan R, Cappelluti E, Buscema M, Guinea F, Zant H S J, Steele G A 2013 Nano Lett. 135361

    [40]

    Jiang J W, Zhou Y P 2017 DOI: 10.5772/intechopen.71929

    [41]

    Sun C Q 2007 Prog. Solid State Chem. 351

    [42]

    Zhu Y F, Jiang Q 2016 Coordin. Chem. Rev. 3261

    [43]

    Marcus R A 1956 J. Chem. Phys. 24966

    [44]

    Wang J H, Ding T, Gao K M, Wang L F, Zhou P W, Wu K F 2021 Nat. Commun. 126333

    [45]

    Ghosh R, Papnai B, Chen Y S, Yadav K, Sankar R, Hsieh Y P, Hofmann M, Chen Y F 2023 Adv. Mater. 352210746

    [46]

    Garzona L V, Frisenda R, Gomez A C 2019 Nanoscale 1112080

    [47]

    Shang H X, Liang X, Deng F, Hu S L, Shen S P 2022 Int. J. Mech. Sci. 234107685

    [48]

    Shang H X, Dong H T, Wu Y H, Deng F, Liang X, Hu S L, Shen S P 2024 Phys. Rev. Lett. 132116201

    [49]

    Zhang Z, Zhao Y P, Ouyang G 2017 J. Phys. Chem. C 12119296

    [50]

    Furchi M M, Pospischil A, Libisch F, Burgdörfer J, Mueller T 2014 Nano Lett. 144785

    [51]

    Lee C H, Lee G H, Zande A M, Chen W C, Li Y L, Han M Y, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9676

    [52]

    Cao G Y, Shang A X, Zhang C, Gong Y P, Li S J, Bao Q L, Li X F 2016 Nano Energy 30260

  • [1] Duan Cong, Liu Jun-Jie, Chen Yong-Jie, Zuo Hui-Ling, Dong Jian-Sheng, Ouyang Gang. Adhesion properties of MoS2/SiO2 interface: Size and temperature effects. Acta Physica Sinica, doi: 10.7498/aps.73.20231648
    [2] Hu Wei-Wei, Sun Jin-Chang, Zhang Yu, Gong Yue, Fan Yu-Ting, Tang Xin-Feng, Tan Gang-Jian. Improving thermoelectric performance of GeSe compound by crystal structure engineering. Acta Physica Sinica, doi: 10.7498/aps.71.20211843
    [3] Meng Yu-Xin, Zhao Yi-Fan, Li Shao-Chun. Research progress of puckered honeycomb monolayers. Acta Physica Sinica, doi: 10.7498/aps.70.20210638
    [4] Crystal Structure Engineering as a Means of Boosting the Thermoelectric Performance of GeSe. Acta Physica Sinica, doi: 10.7498/aps.70.20211843
    [5] Chen Chao, Duan Fang-Li. Effect of functional groups on crumpling behavior and structure of graphene oxide. Acta Physica Sinica, doi: 10.7498/aps.69.20200651
    [6] Chen Lu, Li Ye-Fei, Zheng Qiao-Ling, Liu Qing-Kun, Gao Yi-Min, Li Bo, Zhou Chang-Meng. Theoretical study of atomic relaxation, surface energy, electronic structure and properties of B2- and B19'-NiTi surfaces. Acta Physica Sinica, doi: 10.7498/aps.68.20181944
    [7] Jin Feng, Zhang Zhen-Hua, Wang Cheng-Zhi, Deng Xiao-Qing, Fan Zhi-Qiang. Twisting effects on energy band structures and transmission behaviors of graphene nanoribbons. Acta Physica Sinica, doi: 10.7498/aps.62.036103
    [8] Sun Wei-Feng, Zheng Xiao-Xia. First-principles study of interface relaxation effects on interface structure, band structure and optical property of InAs/GaSb superlattices. Acta Physica Sinica, doi: 10.7498/aps.61.117301
    [9] Huang Duo-Hui, Wang Fan-Hou, Cheng Xiao-Hong, Wan Ming-Jie, Jiang Gang. The study of structure characteristics of GeTe and GeSe molecules under the external electric field. Acta Physica Sinica, doi: 10.7498/aps.60.123101
    [10] Sang Cui-Cui, Wan Jian-Jie, Dong Chen-Zhong, Ding Xiao-Bin, Jiang Jun. Relaxation effect in photoionization processes of lithium. Acta Physica Sinica, doi: 10.7498/aps.57.2152
    [11] Shao Ming-Zhu, Luo Shi-Yu. The sine-squared potential and the band structure for channelling effects. Acta Physica Sinica, doi: 10.7498/aps.56.3407
    [12] Ma Xin-Guo, Tang Chao-Qun, Huang Jin-Qiu, Hu Lian-Feng, Xue Xia, Zhou Wen-Bin. First-principle calculations on the geometry and relaxation structure of anatase TiO2(101) surface. Acta Physica Sinica, doi: 10.7498/aps.55.4208
    [13] CHAO YUE-SHENG, SUN SHAO-QUAN, TENG GONG-QING, LAI ZU-HAN. ACCELERATING EFFECT OF HIGH DENSITY ELECTRO-PULSING UPON STRUCTURE RELAXATION AND CRYSTALLIZATION OF AMORPHOUS ALLOY. Acta Physica Sinica, doi: 10.7498/aps.45.1506
    [14] LI FU-BIN. THEORY OF THE BAND NONPARABOLICITY EFFECTS ON FR?HLICH POLARONS. Acta Physica Sinica, doi: 10.7498/aps.40.610
    [15] LIU YAN-ZHANG, FAN XI-QING. INFRARED DIVERGENCE RESPONSE OF STRUCTURAL RELAXATION IN KCl:OH. Acta Physica Sinica, doi: 10.7498/aps.39.424
    [16] LI YU-ZHANG, XU ZHONG-YING, GE WEI-KUN, XU JI-SONG, ZHENG BAO-ZHEN, ZHUANG WEI-HUA. NONEQUILIBRIUM PHONON EFFECTS IN HOT CARRIER RELAXATION PROCESSES OF MULTIPLE QUANTUM WELL STRUCTURES. Acta Physica Sinica, doi: 10.7498/aps.38.1540
    [17] FAN XI-QING, WANG GUO-LIANG, LIU FU-SUI. THE INFRARED DIVERGENCE RESPONSE OF STRUCTURAL RELAXATION IN GLASSES. Acta Physica Sinica, doi: 10.7498/aps.35.896
    [18] XIA JIAN-BAI. RELAXATION EFFECTS OF THE (111) SURFACE OF Si AND GaAs. Acta Physica Sinica, doi: 10.7498/aps.33.143
    [19] LI JING-DE. THE PYROELECTRIC RELAXATION EFFECT. Acta Physica Sinica, doi: 10.7498/aps.33.1563
    [20] АНАЛИЗ ПРОЧНОСТИ МЕЖАТОМНОЙ СВЯЗИ МЕТАЛЛОВ ПО ЭЛЕКТРОННЫМ СТРУКТУРАМ. Acta Physica Sinica, doi: 10.7498/aps.17.1-2
Metrics
  • Abstract views:  109
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Available Online:  01 November 2024

/

返回文章
返回