-
Large-scale molecular dynamics simulations are performed to study the adhesive contact between a rigid spherical tip and an elastic flat substrate. We focus on he relations between the real contact area and the external load and between the repulsive force and attractive force on contact interface. The simulated results are consistent with the corresponding continuum contact theories, which are Hertz model, Ggeenwood-Williamson (or Persson) model and Maugis-Dugdale model according to surface roughness and interfacial adhesion. We show that there are same relations between the real contact area and the repulsive force for both non-adhesive and adhesive contact, which means that the effect of adhesion on contact behavior can be equivalent to that of a virtual load. We demonstrate that the attractive force on contact interface increases with the real contact area in a power-law function, with a power exponent larger than 1 for the atomic-scale smooth tip and with a power exponent smaller than 1 for the atomic-scale rough tip.
-
Keywords:
- nanoscale contact /
- adhesion /
- molecular dynamics simulation
[1] Johnson K L 1985 Contact Mechanics (Cambridge: Cambridge University Press)
[2] Johnson K L, Kendall K, Roberts A D 1971 Proc. Roy. Soc. London Ser. A 324 301
[3] Derjaguin B V, Muller V M, Toporov Y P 1975 J. Colloid Interface Sci. 53 314
[4] Maugis D 1992 J. Colloid Interface Sci. 150 243
[5] Persson B N J 2001 J. Chem. Phys. 115 3840
[6] Persson B N J 2007 Phys. Rev. Lett. 99 125502
[7] Luan B, Robbins M O 2005 Nature 435 929
[8] Luan B, Robbins M O 2006 Phys. Rev. E 74 026111
[9] Mo Y, Turner K, Szlufarska I 2009 Nature 457 1116
[10] Mo Y, Szlufarska I 2010 Phys. Rev. B 81 035405
[11] Yang C, Tartaglino U, Persson B N J 2006 Eur. Phys. J. E 19 47
[12] Carpick W, Ogletree D F, Salmeron M 1999 J. Colloid Interface Sci. 211 395
[13] Schwarz U D 2003 J. Colloid Interface Sci. 261 99 016201-5
-
[1] Johnson K L 1985 Contact Mechanics (Cambridge: Cambridge University Press)
[2] Johnson K L, Kendall K, Roberts A D 1971 Proc. Roy. Soc. London Ser. A 324 301
[3] Derjaguin B V, Muller V M, Toporov Y P 1975 J. Colloid Interface Sci. 53 314
[4] Maugis D 1992 J. Colloid Interface Sci. 150 243
[5] Persson B N J 2001 J. Chem. Phys. 115 3840
[6] Persson B N J 2007 Phys. Rev. Lett. 99 125502
[7] Luan B, Robbins M O 2005 Nature 435 929
[8] Luan B, Robbins M O 2006 Phys. Rev. E 74 026111
[9] Mo Y, Turner K, Szlufarska I 2009 Nature 457 1116
[10] Mo Y, Szlufarska I 2010 Phys. Rev. B 81 035405
[11] Yang C, Tartaglino U, Persson B N J 2006 Eur. Phys. J. E 19 47
[12] Carpick W, Ogletree D F, Salmeron M 1999 J. Colloid Interface Sci. 211 395
[13] Schwarz U D 2003 J. Colloid Interface Sci. 261 99 016201-5
Catalog
Metrics
- Abstract views: 6813
- PDF Downloads: 434
- Cited By: 0