-
The phase-field crystal (PFC) model is employed to study the morphological evolution and the crystallographic tilt of heteroepitaxial growth on vicinal substrates. The results are as follows: for heterostructures with large misfit (ε > 0.08) the crystallographic tilt of epitaxial layer is approximately proportional to the substrate miscut angle, while the elastic strain energy of the film will lead to the nucleation of dislocation, which contributes to step-flow growth mode. As for the heterostructures with small misfit (ε < 0.04) the elastic strain energy will be released in the form of surface energy, and the surface profile of epitaxial film is dislocation-free island. When exposed to high undercooling, the substrate with large misfit and miscut angle will result in small-angle grain boundary between the substrate and the epitaxial layer. The small-angle grain boundary is composed of arranged dislocations, and it significantly changes the growth orientation of epitaxial layer.
-
Keywords:
- heteroepitaxial /
- morphological evolution /
- phase field crystal model /
- crystallographic tilt
[1] Capper P, Mauk M 2007 Liquid Phase Epitaxy of Electronic Optical and Optoelectronic Materials (West Sussex: Wiley) p16
[2] Riesz F 1995 J. Vac. Sci. Technol. A 14 425
[3] Much F, Ahr M, Biehl M 2002 Comput. Phys. Commun. 147 226
[4] Much F 2003 Europhys. Lett. 63 14
[5] Walther M, Biehl M, Kinzel W 2007 Phys. Stat. Sol. 9 3210
[6] Zhang C, Meng Y, Yan C, Tang X, Wang Y L, Zhang Q Y 2007 Acta Phys. Sin. 56 452 (in Chinese) [张超, 孟旸, 颜超, 唐鑫, 王永亮, 张庆瑜 2007 物理学报 56 452]
[7] Zhou N G, Zhou L 2005 Acta Phys. Sin. 54 3278 (in Chinese) [周耐根, 周浪 2005 物理学报 57 4667]
[8] Zhou N G, Zhou L 2008 Acta Phys. Sin. 57 3064 (in Chinese) [周耐根, 周浪 2008 物理学报 57 3064]
[9] Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701
[10] Elder K R, Grant M 2004 Phys. Rev. E 70 051605
[11] Provatas N, Dantzig J A, Athreya B , Chan P, Stefanovic P, Goldenfeld N, Elder K R 2007 JOM 59 83
[12] Yu Y M, Backofen R, Voigt A 2011 J. Cryst. Growth 318 18
[13] Jaatinen A, Ala-Nissila T 2010 J. Phys.: Condens. Matter 22 205402
[14] Riesz F 1996 J. Appl. Phys. 79 15
[15] Pesek A, Hingerl K, Fiesz F, Lischka K 1991 Semicond. Sci. Technol. 6 705
[16] Ovidko L 2000 Rev. Adv. Mater. Sci. 1 61
-
[1] Capper P, Mauk M 2007 Liquid Phase Epitaxy of Electronic Optical and Optoelectronic Materials (West Sussex: Wiley) p16
[2] Riesz F 1995 J. Vac. Sci. Technol. A 14 425
[3] Much F, Ahr M, Biehl M 2002 Comput. Phys. Commun. 147 226
[4] Much F 2003 Europhys. Lett. 63 14
[5] Walther M, Biehl M, Kinzel W 2007 Phys. Stat. Sol. 9 3210
[6] Zhang C, Meng Y, Yan C, Tang X, Wang Y L, Zhang Q Y 2007 Acta Phys. Sin. 56 452 (in Chinese) [张超, 孟旸, 颜超, 唐鑫, 王永亮, 张庆瑜 2007 物理学报 56 452]
[7] Zhou N G, Zhou L 2005 Acta Phys. Sin. 54 3278 (in Chinese) [周耐根, 周浪 2005 物理学报 57 4667]
[8] Zhou N G, Zhou L 2008 Acta Phys. Sin. 57 3064 (in Chinese) [周耐根, 周浪 2008 物理学报 57 3064]
[9] Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701
[10] Elder K R, Grant M 2004 Phys. Rev. E 70 051605
[11] Provatas N, Dantzig J A, Athreya B , Chan P, Stefanovic P, Goldenfeld N, Elder K R 2007 JOM 59 83
[12] Yu Y M, Backofen R, Voigt A 2011 J. Cryst. Growth 318 18
[13] Jaatinen A, Ala-Nissila T 2010 J. Phys.: Condens. Matter 22 205402
[14] Riesz F 1996 J. Appl. Phys. 79 15
[15] Pesek A, Hingerl K, Fiesz F, Lischka K 1991 Semicond. Sci. Technol. 6 705
[16] Ovidko L 2000 Rev. Adv. Mater. Sci. 1 61
Catalog
Metrics
- Abstract views: 7642
- PDF Downloads: 780
- Cited By: 0