Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The influence of alkali metal ions on crystallization habits of nonlinear optical crystal containing [B3O7] groups

Wang Di Zhang De-Ming Zhang Ji Wang Xiao-Fei Zhang Qin-Li Wan Song-Ming Yin Shao-Tang

Citation:

The influence of alkali metal ions on crystallization habits of nonlinear optical crystal containing [B3O7] groups

Wang Di, Zhang De-Ming, Zhang Ji, Wang Xiao-Fei, Zhang Qin-Li, Wan Song-Ming, Yin Shao-Tang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • LiB3O5 and CsB3O5 are two excellent nonlinear optical borate crystals containing [B3O7] groups. With a difference of aikali metal ions in structure, LiB3O5 and CsB3O5 exhibit different crystallization habits. The former is an incongruent compound, which cannot crystallize from its melt; however, the latter is a congruent compound obtained by cooling its melt directly. In this work, using Raman spectroscopy and ab initio calculation, the structures of LiB3O5 and CsB3O5 melts have been investigated, and then the influence of alkali metal ions on melt structures is discussed, finally, the relationship between crystallization habits of LiB3O5 and CsB3O5 and their melts is proposed. Results suggest that the boron oxide species of LiB3O5 and CsB3O5 melts are in the form of six-membered rings B3Ø7 and B3Ø6 (Ø represents a bridging oxygen); Raman frequency of the symmetric breathing vibration of six-membered rings shifts to low frequency with the addition of BØ4 tetrahedrons in rings; the relatively large amount of BØ4 tetrahedrons is found in LiB3O5 melts. However, Cs+ ions with larger ion radius hinder the formation of BØ4 tetrahedrons, and then reduc, the BØ4/BØ3 ratio of the melt. Finally, considering the growth mechanism of LiB3O5 and CsB3O5 crystals (Wang D, Wan S M et al. 2011 Cryst. Eng. Comm. 13 5239), we propose that the amount of BØ4 tetrahedrons in melts, which is influenced by aikali metal ions, determines LiB3O5 and CsB3O5 crystallization habits, therefore, and suggest the reduction of BØ4 tetrahedrons in melts is an effective way to crystallize LiB3O5.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50932005, 51102239, 90922003, 51172236).
    [1]

    Chen C T 2001 Journal of Synthetic Crystals 30 36 (in Chinese) [陈创天 2001 人工晶体学报 30 36]

    [2]

    Nikogosyan D N 1994 Appl. Phys. A: Solids Surf. 58 181

    [3]

    Wu Y C, Fu P Z, Wang J X, Xu Z Y, Zhang L, Kong Y F, Chen C T 1997 Opt. Lett. 22 1840

    [4]

    Wu Y C 2001 Journal of Synthetic Crystals 30 43 (in Chinese) [吴以成 2001 人工晶体学报 30 43]

    [5]

    Shumov D P, Nenov A T, Nihtianova D D 1996 J. Cryst. Growth 169 519

    [6]

    Kima H G, Kang J K, Lee S H, Chung S J 1998 J. Cryst. Growth 187 455

    [7]

    Parfeniuk C, Samarasekera I V, Weinberg F 1996 J. Cryst. Growth 158 514

    [8]

    Parfeniuk C, Samarasekera I V, Weinberg F, Edel J, Fjeldsted K, Lent B 1996 J. Cryst. Growth 158 523

    [9]

    Wu Y C, Sasaki T, Nakai S, Yokotani A, Tang H, Chen C T 1993 Appl. Phys. Lett. 62 2614

    [10]

    Zhou W P, Wan S M, Yin S T, Zhang Q L, You J L, Wang Y Y 2009 Acta Phys. Sin. 58 570 (in Chinese) [周文平, 万松明, 殷绍唐, 张庆礼, 尤静林, 王媛媛 2009 物理学报 58 570]

    [11]

    Elwell D, Scheel H J 2011 Crystal Growth from High-Temperature Solutions (Digital Version) (London: Academic Press INC) p16

    [12]

    Wang D, Wan S M, Yin S T, Zhang Q L, You J L, Zhang G C, Fu P Z 2011 Cryst. Eng. Comm. 13 5239

    [13]

    Hou M, You J L, Simon P, Zhang G C, Wan S M, Wang Y Y, Ji Z F, Wang L H, Fu P Z, Wu Y C, Yin S T 2011 Cryst. Eng. Comm. 13 3030

    [14]

    Wan S M, Zhang X, Zhao S J, Zhang Q L, You J L, Lu L, Fu P Z, Wu Y C, Yin S T 2007 Cryst. Growth Des. 8 412

    [15]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, Fabris S, Fratesi G, Gironcoli S D, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smo-gunov A, Umari P, Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502

    [16]

    Koenig H, Hoppe R 1978 Z. Anorg. Allg. Chem. 439 71

    [17]

    Zhang G Y, Lan G X, Wang Y F 2001 Lattice Vibration Spectroscopy (Second Edition) (Beijing: Higher Education Press) p79 (in Chinese) [张光寅, 蓝国祥, 王玉芳 2001 晶格振动光谱学 (第2版) (北京: 高等教育出版社) 第79页]

    [18]

    Xiong G S, Lan G X, Wang H F, Huang C E 1993 J. Raman Spectrosc. 24 785

    [19]

    Wang Y F, Liu J J, Hu S F, Lan G X, Fu P Z, Wang Z X 1999 J. Raman Spectrosc. 30 519

    [20]

    Meera B N, Ramakrishna J 1993 J. Non-Cryst. Solids 159 1

    [21]

    Galeener F L, Lucovsky G, Mikkelsen Jr J C 1980 Phys. Rev. B 22 3983

    [22]

    Osipov A A, Osipova L M 2009 Glass Phys. Chem. 35 132

    [23]

    Irikura K K, Johnson R D, Kacker R N 2005 J. Phys. Chem. 109 8430

    [24]

    Chryssikos G D, Kamitsos E I, Karakassides M A 1990 Phys. Chem. Glasses 31 109

    [25]

    Wang D, Zhang J, Zhang D M, Wan S M, Zhang Q L, Sun D L, Yin S T 2013 Cryst. Eng. Comm. 15 356

  • [1]

    Chen C T 2001 Journal of Synthetic Crystals 30 36 (in Chinese) [陈创天 2001 人工晶体学报 30 36]

    [2]

    Nikogosyan D N 1994 Appl. Phys. A: Solids Surf. 58 181

    [3]

    Wu Y C, Fu P Z, Wang J X, Xu Z Y, Zhang L, Kong Y F, Chen C T 1997 Opt. Lett. 22 1840

    [4]

    Wu Y C 2001 Journal of Synthetic Crystals 30 43 (in Chinese) [吴以成 2001 人工晶体学报 30 43]

    [5]

    Shumov D P, Nenov A T, Nihtianova D D 1996 J. Cryst. Growth 169 519

    [6]

    Kima H G, Kang J K, Lee S H, Chung S J 1998 J. Cryst. Growth 187 455

    [7]

    Parfeniuk C, Samarasekera I V, Weinberg F 1996 J. Cryst. Growth 158 514

    [8]

    Parfeniuk C, Samarasekera I V, Weinberg F, Edel J, Fjeldsted K, Lent B 1996 J. Cryst. Growth 158 523

    [9]

    Wu Y C, Sasaki T, Nakai S, Yokotani A, Tang H, Chen C T 1993 Appl. Phys. Lett. 62 2614

    [10]

    Zhou W P, Wan S M, Yin S T, Zhang Q L, You J L, Wang Y Y 2009 Acta Phys. Sin. 58 570 (in Chinese) [周文平, 万松明, 殷绍唐, 张庆礼, 尤静林, 王媛媛 2009 物理学报 58 570]

    [11]

    Elwell D, Scheel H J 2011 Crystal Growth from High-Temperature Solutions (Digital Version) (London: Academic Press INC) p16

    [12]

    Wang D, Wan S M, Yin S T, Zhang Q L, You J L, Zhang G C, Fu P Z 2011 Cryst. Eng. Comm. 13 5239

    [13]

    Hou M, You J L, Simon P, Zhang G C, Wan S M, Wang Y Y, Ji Z F, Wang L H, Fu P Z, Wu Y C, Yin S T 2011 Cryst. Eng. Comm. 13 3030

    [14]

    Wan S M, Zhang X, Zhao S J, Zhang Q L, You J L, Lu L, Fu P Z, Wu Y C, Yin S T 2007 Cryst. Growth Des. 8 412

    [15]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, Fabris S, Fratesi G, Gironcoli S D, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smo-gunov A, Umari P, Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502

    [16]

    Koenig H, Hoppe R 1978 Z. Anorg. Allg. Chem. 439 71

    [17]

    Zhang G Y, Lan G X, Wang Y F 2001 Lattice Vibration Spectroscopy (Second Edition) (Beijing: Higher Education Press) p79 (in Chinese) [张光寅, 蓝国祥, 王玉芳 2001 晶格振动光谱学 (第2版) (北京: 高等教育出版社) 第79页]

    [18]

    Xiong G S, Lan G X, Wang H F, Huang C E 1993 J. Raman Spectrosc. 24 785

    [19]

    Wang Y F, Liu J J, Hu S F, Lan G X, Fu P Z, Wang Z X 1999 J. Raman Spectrosc. 30 519

    [20]

    Meera B N, Ramakrishna J 1993 J. Non-Cryst. Solids 159 1

    [21]

    Galeener F L, Lucovsky G, Mikkelsen Jr J C 1980 Phys. Rev. B 22 3983

    [22]

    Osipov A A, Osipova L M 2009 Glass Phys. Chem. 35 132

    [23]

    Irikura K K, Johnson R D, Kacker R N 2005 J. Phys. Chem. 109 8430

    [24]

    Chryssikos G D, Kamitsos E I, Karakassides M A 1990 Phys. Chem. Glasses 31 109

    [25]

    Wang D, Zhang J, Zhang D M, Wan S M, Zhang Q L, Sun D L, Yin S T 2013 Cryst. Eng. Comm. 15 356

  • [1] Zhang Mao-Di, Jiao Chen-Yin, Wen Ting, Li Jing, Pei Sheng-Hai, Wang Zeng-Hui, Xia Juan. In-situ high pressure polarized Raman spectroscopy of rhenium disulfide. Acta Physica Sinica, 2022, 71(14): 140702. doi: 10.7498/aps.71.20220053
    [2] Li Jia-Hong, Sun Gui-Hua, Zhang Qing-Li, Wang Xiao-Fei, Zhang De-Ming, Liu Wen-Peng, Gao Jin-Yun, Zheng Li-Li, Han Song, Chen Zhao, Yin Shao-Tang. Effect of annealing atmosphere on the structure and spectral properties of GdScO3 and Yb:GdScO3 crystals. Acta Physica Sinica, 2022, 71(16): 164206. doi: 10.7498/aps.71.20220196
    [3] Song Meng-Ting, Zhang Yue, Huang Wen-Juan, Hou Hua-Yi, Chen Xiang-Bai. Enhancement of two-magnon scattering in annealed nickel oxide studied by Raman spectroscopy. Acta Physica Sinica, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [4] Ding Yan, Zhong Yue-Hua, Guo Jun-Qing, Lu Yi, Luo Hao-Yu, Shen Yun, Deng Xiao-Hua. Anisotropic Raman characterization and electrical properties of black phosphorus. Acta Physica Sinica, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [5] Wang Xin, Kang Zhe-Ming, Liu Long, Fan Xian-Guang. Baseline correction algorithm for Raman spectra based on median filtering and un-uniform B-spline. Acta Physica Sinica, 2020, 69(20): 200701. doi: 10.7498/aps.69.20200552
    [6] Wang Peng-Hua, Tang Ji-Long, Kang Yu-Bin, Fang Xuan, Fang Dan, Wang Deng-Kui, Lin Feng-Yuan, Wang Xiao-Hua, Wei Zhi-Peng. Crystal structure and optical properties of GaAs nanowires. Acta Physica Sinica, 2019, 68(8): 087803. doi: 10.7498/aps.68.20182116
    [7] Li Yan, Zhang Lin-Bin, Li Jiao, Lian Xiao-Xue, Zhu Jun-Wu. Crystallization characteristics of zinc oxide under electric field and Raman spectrum analysis of polarized products. Acta Physica Sinica, 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
    [8] Zhang Li, Zheng Hai-Yang, Wang Ying-Ping, Ding Lei, Fang Li. Characteristics of Raman spectrum from stand-off detection. Acta Physica Sinica, 2016, 65(5): 054206. doi: 10.7498/aps.65.054206
    [9] Zhou Hai-Liang, Gu Qing-Tian, Zhang Qing-Hua, Liu Bao-An, Zhu Li-Li, Zhang Li-Song, Zhang Fang, Xu Xin-Guang, Wang Zheng-Ping, Sun Xun, Zhao Xian. Raman spectroscopic study on the micro-structure of NH4H2PO4 and ND4D2PO4 crystals. Acta Physica Sinica, 2015, 64(19): 197801. doi: 10.7498/aps.64.197801
    [10] Chen Yuan-Zheng, Li Shuo, Li Liang, Men Zhi-Wei, Li Zhan-Long, Sun Cheng-Lin, Li Zuo-Wei, Zhou Mi. Study of phase transition of HoVO4 under high pressure by Raman scattering and ab initio calculations. Acta Physica Sinica, 2013, 62(24): 246101. doi: 10.7498/aps.62.246101
    [11] Zhang Ji, Wang Di, Zhang De-Ming, Zhang Qing-Li, Wan Song-Ming, Sun Dun-Lu, Yin Shao-Tang. Vibrational spectra and first principles calculation of BaBPO5 crystal. Acta Physica Sinica, 2013, 62(3): 037802. doi: 10.7498/aps.62.037802
    [12] Zhou Mi, Li Zhan-Long, Lu Guo-Hui, Li Dong-Fei, Sun Cheng-Lin, Gao Shu-Qin, Li Zuo-Wei. High pressure Raman investigation on the Fermi resonance of biphenyl. Acta Physica Sinica, 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [13] Wang Li-Hong, You Jing-Lin, Wang Yuan-Yuan, Zheng Shao-Bo, Simon Patrick, Hou Min, Ji Zi-Fang. Temperature dependent Raman spectra and micro-structure study of hexagonal MgTiO3 crystal. Acta Physica Sinica, 2011, 60(10): 104209. doi: 10.7498/aps.60.104209
    [14] Fu Pei-Zhen, Hou Bi-Hui, Wang Li, Zhong Ren-Bin, Wang Ya-Li, Zhang Er-Pan, Jian Yan-Zhen. Terahertz spectra and soft optical phonons of PbB4O7 crystal. Acta Physica Sinica, 2010, 59(7): 4640-4645. doi: 10.7498/aps.59.4640
    [15] Zhou Wen-Ping, Wan Song-Ming, Zhang Xia, Zhang Qing-Li, Sun Dun-Lu, Qiu Huai-Li, You Jing-Lin, Yin Shao-Tang. Study of growth units and the growth habit of PbMoO4 crystal using high temperature Raman spectra. Acta Physica Sinica, 2008, 57(11): 7305-7309. doi: 10.7498/aps.57.7305
    [16] Ding Shuo, Liu Yu-Long, G. G. Siu. Raman study of SnO2 nanograins under different annealing temperature. Acta Physica Sinica, 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
    [17] Xu Cun-Ying, Zhang Peng-Xiang, Yan Lei. Blue shift of Raman peaks of coated BaTiO3 nanoparticles. Acta Physica Sinica, 2005, 54(11): 5089-5092. doi: 10.7498/aps.54.5089
    [18] Bai Ying, Lan Yan-Na, Mo Yu-Jun. Temperature measurement from the Raman spectra of porous silicon. Acta Physica Sinica, 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
    [19] Sun Dun-Lu, Qiu Huai-Li, Hang Yin, Zhang Lian-Han, Zhu Shi-Ning, Wang Ai-Hua, Yin Shao-Tang. Study on laser-micro-Raman spectra in near-stoichiometric LiNbO3 crystals. Acta Physica Sinica, 2004, 53(7): 2270-2274. doi: 10.7498/aps.53.2270
    [20] Ding Pei, Liang Er-Jun, Zhang Hong-Rui, Liu Yi-Zhen, Liu Hui, Guo Xin-Yong, Du Zu-Liang. Growth mechanism and Raman spectroscopic study of “interlinked-cone" shaped CNx nanotubes. Acta Physica Sinica, 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
Metrics
  • Abstract views:  5763
  • PDF Downloads:  297
  • Cited By: 0
Publishing process
  • Received Date:  23 December 2012
  • Accepted Date:  16 April 2013
  • Published Online:  05 August 2013

/

返回文章
返回