Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of criticality benchmark experiments with beryllium reflectors

Hu Ze-Hua Yin Yan-Peng Ye Tao

Citation:

Analysis of criticality benchmark experiments with beryllium reflectors

Hu Ze-Hua, Yin Yan-Peng, Ye Tao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Beryllium is an important nuclear material, and the reliability of the data for neutron-induced nuclear reactions of beryllium is of significant importance for nuclear engineering. The evaluated nuclear data for beryllium have been improving from ENDF/B-VI to ENDF/B-VⅡ.0 and then to ENDF/B-VⅡ.1. The comparisons between the calculated and experimental results of the criticality benchmark experiments are the essential means to test the reliability of nuclear data and indicate the direction of the improvement of nuclear data. There are several series of criticality benchmark experiments with beryllium reflector available for testing beryllium nuclear data. However, the calculated results are not consistent across these benchmarks. Two series of these benchmarks that are similar to each other, namely HMF058 and HMF066, are selected for discussion. HMF058 and HMF066 are both highly enriched metal fast benchmarks, with five cases of experiments in HMF058 benchmark and nine in HMF066. With ENDF/B-VⅡ.1 cross sections, a clearly increasing C/E keff bias is observed with increasing beryllium reflector thickness for the five cases in HMF058 benchmark, while using ENDF/B-VⅡ.0 cross sections, all the C/E values for keff remain within the experimental uncertainty. However, HMF066 are calculated very well with ENDF/B-VⅡ.1 cross sections, but a bias of about 500 pcm is observed with ENDF/B-VⅡ.0 data. These results are particularly puzzling since there is little difference between the configurations of HMF058 and HMF066, so the quality of beryllium nuclear data cannot be evaluated and the direction for improvement cannot be figured out either. The similarity method, based on the use of sensitivity coefficients calculated by sensitivity and uncertainty code SURE, is used to analyze the similarity between two series of benchmark experiments. First, the neutronics similarity index between each pair of the total of fourteen cases of experiments from the two benchmarks is calculated. Then, the most similar experiments from HMF066 to each case of the five experiments from HMF058 are selected by similarity index, and the experiments are grouped into five similarity suites, each with one from HMF058 and the others from HMF066. The experiments in the same similarity suite are highly similar to each other on neutronics. In a similarity suite, the deviations of calculated results and experimental values are disagreed for experiments from different series, but the deviations agree with each other for experiments from the same series. This shows that the agreement between the calculated results and experimental values cannot be improved by revising the nuclear data. It is necessary to carry out the detailed reevaluation of the benchmark experiments, or to develop reliable new integral experiments to exclude unreliable experiments, in order to avoid the misleading of the nuclear data testing.
      Corresponding author: Yin Yan-Peng, 149913022@qq.com
    • Funds: Project supported by the Foundation of Key Laboratory of Neutron Physics of China Academy of Engineering Physics(Grant No. 2013AA02), the Sub-item of Special Projects of the National Energy Bureau, China(Grant No. 2015ZX06002008), and the National Magnetic Confinement Fusion Energy Research Project, China(Grant No. 2015GB108002).
    [1]

    Trkov A, Herman M, Brown D A 2012 ENDF-6 Formats Manual (USA:National Nuclear Data Center Brookhaven National Laboratory) Report BNL-90365-2009 Rev. 2(CSEWG Document ENDF-102)

    [2]

    Shibata K, Iwamoto O, Nakagawa T, Iwamoto N, Ichihara A, Kunieda S, Chiba S, Furutaka K, Otuka N, Ohsawa T, Murata T, Matsunobu H, Zukeran A, Kamada S, Katakura J 2011 J. Nucl. Sci. Technol. 48 1

    [3]

    Koning A J 2011 J. Korean Phys. Soc. 59 1057

    [4]

    Ge Z G, Zhao Z X, Xia H H 2011 J. Korean Phys. Soc. 59 1052

    [5]

    Zabrodskaya S V, Ignatyuk A V, Koscheev V N 2007 VANT, Nuclear Constants 1-2 3

    [6]

    Chadwick M B, Herman M, Oblozinsky P, Dunn M E, Danon Y, Kahler A C, Smith D L, Pritychenko B, Arbanas G, Arcilla R, Brewer R, Brown D A, Capote R, Carlson A D, Cho Y S, Derrien H, Guber K, Hale G M, Hoblit S, Holloway S, Johnson T D, Kawano T, Kiedrowski B C, Kim H, Kunieda S, Larson N M, Leal L, Lestone J P, Little R C, McCutchan E A, MacFarlane R E, MacInnes M, Mattoon C M, McKnight R D, Mughabghab S F, Nobre G P A, Palmiotti G, Palumbo A, Pigni M T, Pronyaev V G, Sayer R O, Sonzogni A A, Summers N C, Talou P, Thompson I J, Trkov A, Vogt R L, van der Marck S C, Wallner A, White M C, Wiarda D, Young P G 2011 Nucl. Data Sheets 112 2887

    [7]

    Chadwick M B, Oblozinsky P, Herman M, M Greene N, McKnight R D, Smith D L, Young P G, MacFarlane R E, Hale G M, Frankle S C, Kahler A C, Kawano T, Little R C, Madland D G, Moller P, Mosteller R D, Page P R, Talou P, Trellue H, White M C, Wilson W B, Arcilla R, Dunford C L, Mughabghab S F, Pritychenko B, Rochman D, Sonzogni A A, Lubitz C R, Trumbull T H, Weinman J P, Br D A, Cullen D E, Heinrichs D P, McNabb D P, Derrien H, Dunn M E, Larson N M, Leal L C, Carlson A D, Block R C, Briggs J B, Cheng E T, Huria H C, Zerkle M L, Kozier K S, Courcelle A, Pronyaev V, van der Marck S C 2006 Nucl. Data Sheets 107 2931

    [8]

    Organisation for Economic Co-operation and Development Nuclear Energy Agency 1999 International Handbook of Evaluated Criticality Safety Benchmark Experiments NEA/NSC/DOC(95)03

    [9]

    Hu Z H, Wang J, Sun W L, Li M S 2013 Atom. Energy Sci. Technol. 47 25(in Chinese)[胡泽华, 王佳, 孙伟力, 李茂生2013原子能科学技术47 25]

    [10]

    X-5 Monte Carlo Team 2003 MCNP–A General Monte Carlo N-Particle Transport Code, Version 5, Volume 1:Overview and Theory (USA:Los Alamos National Laboratory) LA-UR-03-1987

    [11]

    Broadhead B L, Rearden B T, Hopper C M, Wagschal J J, Parks C V 2004 Nucl. Sci. Eng. 146 340

  • [1]

    Trkov A, Herman M, Brown D A 2012 ENDF-6 Formats Manual (USA:National Nuclear Data Center Brookhaven National Laboratory) Report BNL-90365-2009 Rev. 2(CSEWG Document ENDF-102)

    [2]

    Shibata K, Iwamoto O, Nakagawa T, Iwamoto N, Ichihara A, Kunieda S, Chiba S, Furutaka K, Otuka N, Ohsawa T, Murata T, Matsunobu H, Zukeran A, Kamada S, Katakura J 2011 J. Nucl. Sci. Technol. 48 1

    [3]

    Koning A J 2011 J. Korean Phys. Soc. 59 1057

    [4]

    Ge Z G, Zhao Z X, Xia H H 2011 J. Korean Phys. Soc. 59 1052

    [5]

    Zabrodskaya S V, Ignatyuk A V, Koscheev V N 2007 VANT, Nuclear Constants 1-2 3

    [6]

    Chadwick M B, Herman M, Oblozinsky P, Dunn M E, Danon Y, Kahler A C, Smith D L, Pritychenko B, Arbanas G, Arcilla R, Brewer R, Brown D A, Capote R, Carlson A D, Cho Y S, Derrien H, Guber K, Hale G M, Hoblit S, Holloway S, Johnson T D, Kawano T, Kiedrowski B C, Kim H, Kunieda S, Larson N M, Leal L, Lestone J P, Little R C, McCutchan E A, MacFarlane R E, MacInnes M, Mattoon C M, McKnight R D, Mughabghab S F, Nobre G P A, Palmiotti G, Palumbo A, Pigni M T, Pronyaev V G, Sayer R O, Sonzogni A A, Summers N C, Talou P, Thompson I J, Trkov A, Vogt R L, van der Marck S C, Wallner A, White M C, Wiarda D, Young P G 2011 Nucl. Data Sheets 112 2887

    [7]

    Chadwick M B, Oblozinsky P, Herman M, M Greene N, McKnight R D, Smith D L, Young P G, MacFarlane R E, Hale G M, Frankle S C, Kahler A C, Kawano T, Little R C, Madland D G, Moller P, Mosteller R D, Page P R, Talou P, Trellue H, White M C, Wilson W B, Arcilla R, Dunford C L, Mughabghab S F, Pritychenko B, Rochman D, Sonzogni A A, Lubitz C R, Trumbull T H, Weinman J P, Br D A, Cullen D E, Heinrichs D P, McNabb D P, Derrien H, Dunn M E, Larson N M, Leal L C, Carlson A D, Block R C, Briggs J B, Cheng E T, Huria H C, Zerkle M L, Kozier K S, Courcelle A, Pronyaev V, van der Marck S C 2006 Nucl. Data Sheets 107 2931

    [8]

    Organisation for Economic Co-operation and Development Nuclear Energy Agency 1999 International Handbook of Evaluated Criticality Safety Benchmark Experiments NEA/NSC/DOC(95)03

    [9]

    Hu Z H, Wang J, Sun W L, Li M S 2013 Atom. Energy Sci. Technol. 47 25(in Chinese)[胡泽华, 王佳, 孙伟力, 李茂生2013原子能科学技术47 25]

    [10]

    X-5 Monte Carlo Team 2003 MCNP–A General Monte Carlo N-Particle Transport Code, Version 5, Volume 1:Overview and Theory (USA:Los Alamos National Laboratory) LA-UR-03-1987

    [11]

    Broadhead B L, Rearden B T, Hopper C M, Wagschal J J, Parks C V 2004 Nucl. Sci. Eng. 146 340

  • [1] Chen Hao-Yu, Xu Tao, Liu Chuang, Zhang Zi-Ke, Zhan Xiu-Xiu. Network similarity comparison method based on higher-order information. Acta Physica Sinica, 2024, 73(3): 038901. doi: 10.7498/aps.73.20231096
    [2] Yang Jian-Nan, Liu Jian-Guo, Guo Qiang. Node importance idenfication for temporal network based on inter-layer similarity. Acta Physica Sinica, 2018, 67(4): 048901. doi: 10.7498/aps.67.20172255
    [3] Chen Yan-Hong, Cheng Rui, Zhang Min, Zhou Xian-Ming, Zhao Yong-Tao, Wang Yu-Yu, Lei Yu, Ma Peng-Peng, Wang Zhao, Ren Jie-Ru, Ma Xin-Wen, Xiao Guo-Qing. Experimental investigation on diagnosing effective atomic density in gas-type target by using proton energy loss. Acta Physica Sinica, 2018, 67(4): 044101. doi: 10.7498/aps.67.20172028
    [4] Ma Ping, Shi An-Hua, Yang Yi-Jian, Yu Zhe-Feng, Liang Shi-Chang, Huang Jie. Experiment on similarity between wake flow field and electromagnetic scattering characteristic of the hypersonic model. Acta Physica Sinica, 2017, 66(10): 102401. doi: 10.7498/aps.66.102401
    [5] Lu Chang-Bing, Xu Peng, Bao Jie, Wang Zhao-Hui, Zhang Kai, Ren Jie, Liu Yan-Feng. Simulation analysis and experimental verification of fast neutron radiography. Acta Physica Sinica, 2015, 64(19): 198702. doi: 10.7498/aps.64.198702
    [6] Sheng Zong-Qiang, Shu Liang-Ping, Meng Ying, Hu Ji-Gang, Qian Jian-Fa. Systematic calculations on cluster radioactivity half-lives of trans-lead nuclei with effective liquid drop model. Acta Physica Sinica, 2014, 63(16): 162302. doi: 10.7498/aps.63.162302
    [7] Lv Guo-Liang, Wang Zhao-Jun, Zhang Jun, Zhu Chun-Hua. Critical magnetization of degenerate electronic system in neutron star. Acta Physica Sinica, 2011, 60(4): 049702. doi: 10.7498/aps.60.049702
    [8] Zhi Qi-Jun. The study of shape and shape-coexistence of neutron rich nuclei around N=28. Acta Physica Sinica, 2011, 60(5): 052101. doi: 10.7498/aps.60.052101
    [9] Ding Bin-Gang, Zhang Da-Li, Lu Ding-Hui. A discussion about neutron closed shell effect of 14O nucleus. Acta Physica Sinica, 2010, 59(5): 3142-3146. doi: 10.7498/aps.59.3142
    [10] Hu Zheng-Guo, Wang Meng, Xu Hu-Shan, Sun Zhi-Yu, Wang Jian-Song, Xiao Guo-Qing, Zhan Wen-Long, Xiao Zhi-Gang, Mao Rui-Shi, Zhang Hong-Bin, Zhao Tie-Cheng, Xu Zhi-Guo, Wang Yue, Chen Ruo-Fu, Huang Tian-Heng, Gao Hui, Jia Fei, Fu Fen, Gao Qi, Han Jian-Long. Experimental study for neutron-rich exotic nuclei 17B. Acta Physica Sinica, 2008, 57(5): 2866-2870. doi: 10.7498/aps.57.2866
    [11] Zhao Xing-Tao, Hou Lan-Tian, Liu Zhao-Lun, Wang Wei, Wei Hong-Yan, Ma Jing-Rui. Dispersion analysis of photonic crystal fiber using improved full-vectorial effective index method. Acta Physica Sinica, 2007, 56(4): 2275-2280. doi: 10.7498/aps.56.2275
    [12] Liu Jian-Ye, Zuo Wei, Lee Xi-Guo, Xing Yong-Zhong. Isospin effect in the nuclear reaction induced by neutron-halo nuclei. Acta Physica Sinica, 2007, 56(3): 1339-1346. doi: 10.7498/aps.56.1339
    [13] Zuo Wei, Lu Guang-Cheng. Proton and neutron 1S0 superfluidity in asymmetric nuclear matter. Acta Physica Sinica, 2007, 56(7): 3873-3879. doi: 10.7498/aps.56.3873
    [14] Gong Zhi-Qiang, Feng Guo-Lin. Analysis of similarity of several proxy series based on nonlinear analysis method. Acta Physica Sinica, 2007, 56(6): 3619-3629. doi: 10.7498/aps.56.3619
    [15] Tong Yong-Zai, Wang Xi-An, Yu Ben-Hai, Hu Xue-Hui. Self-similarity of the electro-optical effects. Acta Physica Sinica, 2006, 55(12): 6667-6672. doi: 10.7498/aps.55.6667
    [16] Zhang Xiao-Ming, Peng Jian-Hua, Zhang Ru-Yuan. Improving the efficiency of time-delayed feedback control of chaos through linear invertible transform. Acta Physica Sinica, 2005, 54(7): 3019-3026. doi: 10.7498/aps.54.3019
    [17] Shi Qing-Fan, Li Liang-Sheng, Zhang Mei. Effectivity of Hamiltonian terms of "forbidden" 3-magnon interaction. Acta Physica Sinica, 2004, 53(11): 3916-3919. doi: 10.7498/aps.53.3916
    [18] REN ZHONG-ZHOU, XU GONG-OU. EXPLANATIONS TO THE ANOMALOUSLY LARGE RADII OF NUCLEI NEAR THE NEUTRON DRIP LINE. Acta Physica Sinica, 1991, 40(8): 1229-1235. doi: 10.7498/aps.40.1229
    [19] WENG ZHENG-YU, WU HANG-SHENG. RELATION BETWEEN THE FORM OF THE NORMALIZED EFFECTIVE PHONON SPECTRUM AND THE SUPERCONDUCTING Tc. Acta Physica Sinica, 1988, 37(2): 239-247. doi: 10.7498/aps.37.239
    [20] LI HONG-CHENG. INFLUENCE OF EFFECTIVE PHONON SPECTRUM α2F(ω) ON Tc OF SUPERCONDUCTORS. Acta Physica Sinica, 1979, 28(1): 104-116. doi: 10.7498/aps.28.104
Metrics
  • Abstract views:  5760
  • PDF Downloads:  175
  • Cited By: 0
Publishing process
  • Received Date:  19 January 2016
  • Accepted Date:  08 August 2016
  • Published Online:  05 November 2016

/

返回文章
返回