Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fast neutron multiplicity measurement of plutonium material based on spatial multiplication coefficient correction

LI Kaile LI Sufen CAI Xingfu HUO Yonggang WANG Fei

Citation:

Fast neutron multiplicity measurement of plutonium material based on spatial multiplication coefficient correction

LI Kaile, LI Sufen, CAI Xingfu, HUO Yonggang, WANG Fei
cstr: 32037.14.aps.74.20241529
PDF
HTML
Get Citation
  • Fast neutron multiplicity measurement technology is an important non-destructive testing technology in the field of arms control verification. In the technique, the liquid scintillation detector is used to detect the fission neutron and combined with the time correlation analysis method to extract multiplicity counting rates from the pulse signals. This technique is commonly used to measure the mass of nuclear materials, however, it is based on the point model that assumes that the neutron multiplication coefficient keeps constant in the whole spatial volume, which will lead to overestimation of the multiplication coefficient and result in system deviation. To correct the deviation and improve the measurement accuracy, the fast neutron multiplicity simulation measurements are carried out on spherical and cylindrical samples in this work. The relationship among the position of neutron generation, absorption and net growth in the space volume of the material is obtained. According to the definition of the leakage multiplication coefficient, the leakage multiplication coefficients at different positions in the space volume of the material are calculated. On this basis, a method based on spatial multiplication coefficient correction is proposed according to the functional relationship between neutron multiplicity factorial moments and the unknown parameters. In this method, the n-order multiplication coefficient is modified by introducing a weight factor $ {g_n} $, and the fast neutron multiplicity weighted point model equation is derived. To verify the accuracy of this method, a set of fast neutron multiplicity detection model is built by Geant4, and the fast neutron multiplicity simulation measurement is carried out on the spherical and cylindrical samples. The results show that the solution accuracy of the weighted point model equation is higher than that of the standard point model equation, and the measurement deviation is reduced to less than 6 %. This work provides an optimization method for solving plutonium samples with several kilograms in mass, and promotes the development of the fast neutron multiplicity measurement technology.
      Corresponding author: LI Sufen, leesf2006@sina.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12475307).
    [1]

    Fulvio A D, Shin T H, Jordan T, Sosa C, Ruch M L, Clarke S D, Chichester D L, Pozzi S A 2017 Nucl. Instrum. Meth. A 855 92Google Scholar

    [2]

    Li S F, Qiu S Z, Zhang Q H 2016 Appl. Radiat. Isot. 110 53Google Scholar

    [3]

    Stewart J, Menlove H, Mayo D, Geist W, Carrillo L, Herrera G D 2000 The Ephithermal Neutron Multiplicity Counter Design and Performance Manual: More Rapid Plutonium and Uranium Inventory Verifications by Factors of 5–20 (United States: Los Alamos National Lab) p168

    [4]

    Piau V, Litaize O, Chebboubi A, Oberstedt S, Gook A, Oberstedt A 2023 Phys. Lett. B. 837 137648Google Scholar

    [5]

    Clark A, Mattingly J, Favorite J 2020 Nucl. Sci. Eng. 194 308Google Scholar

    [6]

    Fraïsse B, Bélier G, Méot V, Gaudefroy L, Francheteau A, Roig O 2023 Phys. Rev. C 108 014610Google Scholar

    [7]

    Zhang Q H, Yang J Q, Li X S, Li S F, Hou S X, Su X H, Zhou M, Zhuang L, Lin H T 2019 Appl. Radiat. Isot. 152 45Google Scholar

    [8]

    黎素芬, 李凯乐, 张全虎, 蔡幸福 2022 物理学报 71 091401Google Scholar

    Li S F, Li K L, Zhang Q H, Cai X F 2022 Acta Phys. Sin. 71 091401Google Scholar

    [9]

    Shin T H, Hutchinson J, Bahran R 2019 Nucl. Sci. Eng. 193 663Google Scholar

    [10]

    Croft S, Alvarez E, Chard P, McElroy R, Philips S 2007 48th INMM Annual Meeting (Tucson) p89

    [11]

    Li S F, Li K L, Zhang Q H, Cai X F 2022 Nucl. Instrum. Meth. A 1027 166314Google Scholar

    [12]

    Liu X B, Chen L G 2021 Nucl. Instrum. Meth. A 1016 165779Google Scholar

    [13]

    Zhang Q H, Su X H, Hou S X, Li S F, Yang J Q, Hou L J, Zhuang L, Huo Y G, Li J J 2020 J. Nucl. Sci. Technol. 57 678Google Scholar

    [14]

    Li K L, Li S F, Zhang Q H 2021 AIP Adv. 11 165

    [15]

    Enqvist A, Pázsit I, Avdic S 2010 Nucl. Instrum. Meth. A 615 62Google Scholar

    [16]

    Burward-Hoy J M, Geist W H, Krick M S, Mayo D R 2004 Achieving Accurate Nuetron-Multiplicity Analysis of Metals and Oxides with Weighted Point Model Equations (United States: Los Alamos National Lab) p132

    [17]

    Fulvio A D, Shin T H, Basley A, Swenson C, Sosa C, Clarke S D, Sanders J, Watson S, Chichester D L, Pozzi S A 2018 Nucl. Instrum. Meth. A 907 248Google Scholar

    [18]

    Zhang Q H, Li S F, Zhuang L, Huo Y G, Lin H T, Zuo W M 2018 Appl. Radiat. Isot. 135 92Google Scholar

    [19]

    Bai H Y, Xiong Z H, Zhao D S, Su M, Gao F, Xia B Y, Li C G, Pang C G, Mo Z H, Wen J 2023 Nucl. Instrum. Meth. A 1056 168652Google Scholar

    [20]

    Böhnel K 1985 Nucl. Sci. Eng. 90 75Google Scholar

    [21]

    Brown D A, Chadwick M B, Capote R 2018 Nucl. Data Sheets 148 142

  • 图 1  快中子多重性测量系统

    Figure 1.  Fast neutron multiplicity measurement system.

    图 2  多重移位寄存器原理图

    Figure 2.  Principle of multiplicity shift register.

    图 3  中子产生量和吸收量 (a)球体; (b)圆柱体

    Figure 3.  neutron production and absorption: (a) Sphere; (b) cylinder.

    图 4  中子泄漏增殖系数空间分布 (a)球体; (b)圆柱体

    Figure 4.  Spatial distribution of neutron multiplication coefficient: (a) Sphere; (b) cylinder.

    图 5  泄漏增殖系数拟合结果

    Figure 5.  Multiplication coefficient fitting results.

    表 1  中子净增殖量

    Table 1.  Net increase of neutron.

    样品第1层第2层第3层第4层第5层第6层第7层第8层第9层第10层
    球体173663156111142509131236121585110940102358926828274472978
    圆柱体21284720130018967517798016528615454614022412841911341997833
    DownLoad: CSV

    表 2  离散修正因子

    Table 2.  Discrete correction factor.

    样品$ \overline {M_{\text{L}}^n} $$ {(\overline {{M_{\text{L}}}} )^n} $$ {g_n} $
    $ \overline {{M_{\text{L}}}} $$ \overline {M_{\text{L}}^{2}} $$ \overline {M_{\text{L}}^{3}} $$ \overline {M_{\text{L}}^{4}} $$ \overline {M_{\text{L}}^{5}} $$ {(\overline {{M_{\text{L}}}} )^1} $$ {(\overline {{M_{\text{L}}}} )^2} $$ {(\overline {{M_{\text{L}}}} )^3} $$ {(\overline {{M_{\text{L}}}} )^4} $$ {(\overline {{M_{\text{L}}}} )^5} $$ {g_1} $$ {g_2} $$ {g_3} $$ {g_4} $$ {g_5} $
    球体2.034.218.8718.9741.242.034.148.4217.1334.8411.0171.0531.1071.184
    圆柱体2.385.7614.1635.3689.522.385.6613.4531.9976.0911.0171.0521.1051.176
    DownLoad: CSV

    表 3  离散修正效果

    Table 3.  discrete correction effect.

    泄漏增殖系数 计算质量 计算偏差/%
    球体 圆柱体 球体 圆柱体 球体 圆柱体
    修正前 2.16 2.51 161.05 243.06 –28.04 –27.6
    修正后 2.07 2.40 236.03 344.30 5.5 2.6
    DownLoad: CSV

    表 4  拟合修正因子

    Table 4.  Fitting correction factor.

    样品$ \overline {M_{\text{L}}^n} $$ {(\overline {{M_{\text{L}}}} )^n} $$ {g_n} $
    $ \overline {{M_{\text{L}}}} $$ \overline {M_{\text{L}}^{2}} $$ \overline {M_{\text{L}}^{3}} $$ \overline {M_{\text{L}}^{4}} $$ \overline {M_{\text{L}}^{5}} $$ {(\overline {{M_{\text{L}}}} )^1} $$ {(\overline {{M_{\text{L}}}} )^2} $$ {(\overline {{M_{\text{L}}}} )^3} $$ {(\overline {{M_{\text{L}}}} )^4} $$ {(\overline {{M_{\text{L}}}} )^5} $$ {g_1} $$ {g_2} $$ {g_3} $$ {g_4} $$ {g_5} $
    球体2.034.188.7618.6440.222.034.118.3516.9334.3411.0161.0491.1011.171
    圆柱体2.375.7414.0835.0988.612.375.6413.3931.7875.4711.0171.0521.1041.174
    DownLoad: CSV

    表 5  拟合修正效果

    Table 5.  Fitting correction effect.

    泄漏增殖系数 计算质量 计算偏差/%
    球体 圆柱体 球体 圆柱体 球体 圆柱体
    离散修正 2.07 2.40 236.03 344.30 5.45 2.55
    拟合修正 2.08 2.39 231.24 343.02 3.32 2.13
    DownLoad: CSV
  • [1]

    Fulvio A D, Shin T H, Jordan T, Sosa C, Ruch M L, Clarke S D, Chichester D L, Pozzi S A 2017 Nucl. Instrum. Meth. A 855 92Google Scholar

    [2]

    Li S F, Qiu S Z, Zhang Q H 2016 Appl. Radiat. Isot. 110 53Google Scholar

    [3]

    Stewart J, Menlove H, Mayo D, Geist W, Carrillo L, Herrera G D 2000 The Ephithermal Neutron Multiplicity Counter Design and Performance Manual: More Rapid Plutonium and Uranium Inventory Verifications by Factors of 5–20 (United States: Los Alamos National Lab) p168

    [4]

    Piau V, Litaize O, Chebboubi A, Oberstedt S, Gook A, Oberstedt A 2023 Phys. Lett. B. 837 137648Google Scholar

    [5]

    Clark A, Mattingly J, Favorite J 2020 Nucl. Sci. Eng. 194 308Google Scholar

    [6]

    Fraïsse B, Bélier G, Méot V, Gaudefroy L, Francheteau A, Roig O 2023 Phys. Rev. C 108 014610Google Scholar

    [7]

    Zhang Q H, Yang J Q, Li X S, Li S F, Hou S X, Su X H, Zhou M, Zhuang L, Lin H T 2019 Appl. Radiat. Isot. 152 45Google Scholar

    [8]

    黎素芬, 李凯乐, 张全虎, 蔡幸福 2022 物理学报 71 091401Google Scholar

    Li S F, Li K L, Zhang Q H, Cai X F 2022 Acta Phys. Sin. 71 091401Google Scholar

    [9]

    Shin T H, Hutchinson J, Bahran R 2019 Nucl. Sci. Eng. 193 663Google Scholar

    [10]

    Croft S, Alvarez E, Chard P, McElroy R, Philips S 2007 48th INMM Annual Meeting (Tucson) p89

    [11]

    Li S F, Li K L, Zhang Q H, Cai X F 2022 Nucl. Instrum. Meth. A 1027 166314Google Scholar

    [12]

    Liu X B, Chen L G 2021 Nucl. Instrum. Meth. A 1016 165779Google Scholar

    [13]

    Zhang Q H, Su X H, Hou S X, Li S F, Yang J Q, Hou L J, Zhuang L, Huo Y G, Li J J 2020 J. Nucl. Sci. Technol. 57 678Google Scholar

    [14]

    Li K L, Li S F, Zhang Q H 2021 AIP Adv. 11 165

    [15]

    Enqvist A, Pázsit I, Avdic S 2010 Nucl. Instrum. Meth. A 615 62Google Scholar

    [16]

    Burward-Hoy J M, Geist W H, Krick M S, Mayo D R 2004 Achieving Accurate Nuetron-Multiplicity Analysis of Metals and Oxides with Weighted Point Model Equations (United States: Los Alamos National Lab) p132

    [17]

    Fulvio A D, Shin T H, Basley A, Swenson C, Sosa C, Clarke S D, Sanders J, Watson S, Chichester D L, Pozzi S A 2018 Nucl. Instrum. Meth. A 907 248Google Scholar

    [18]

    Zhang Q H, Li S F, Zhuang L, Huo Y G, Lin H T, Zuo W M 2018 Appl. Radiat. Isot. 135 92Google Scholar

    [19]

    Bai H Y, Xiong Z H, Zhao D S, Su M, Gao F, Xia B Y, Li C G, Pang C G, Mo Z H, Wen J 2023 Nucl. Instrum. Meth. A 1056 168652Google Scholar

    [20]

    Böhnel K 1985 Nucl. Sci. Eng. 90 75Google Scholar

    [21]

    Brown D A, Chadwick M B, Capote R 2018 Nucl. Data Sheets 148 142

  • [1] Li Su-Fen, Li Kai-Le, Zhang Quan-Hu, Cai Xing-Fu. Derivation of fast neutron multiplicity measurement equation of uranium material. Acta Physica Sinica, 2022, 71(9): 091401. doi: 10.7498/aps.71.20211653
    [2] Kong De-Zhi, Sun Chao, Li Ming-Yang. Weighted subspace detection method based on modal attenuation law in shallow water. Acta Physica Sinica, 2020, 69(16): 164301. doi: 10.7498/aps.69.20191948
    [3] Zhao Lei, Xu Miao-Hua, Zhang Yi-Hang, Zhang Zhe, Zhu Bao-Jun, Jiang Wei-Man, Zhang Xiao-Peng, Zhao Xu, Tong Bo-Wei, He Shu-Kai, Lu Feng, Wu Yu-Chi, Zhou Wei-Min, Zhang Fa-Qiang, Zhou Kai-Nan, Xie Na, Huang Zheng, Zhong Jia-Yong, Gu Yu-Qiu, Li Yu-Tong, Li Ying-Jun. Laser fast neutron measured by bubble detector. Acta Physica Sinica, 2018, 67(22): 222101. doi: 10.7498/aps.67.20181035
    [4] Kong Jiang-Tao, Huang Jian, Gong Jian-Xing, Li Er-Yu. Evaluation methods of node importance in undirected weighted networks based on complex network dynamics models. Acta Physica Sinica, 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [5] Chu Hua-Qiang, Feng Yan, Cao Wen-Jian, Ren Fei, Gu Ming-Yan. Comprehensive evaluation and analysis of the weighted-sum-of-gray-gases radiation model. Acta Physica Sinica, 2017, 66(9): 094207. doi: 10.7498/aps.66.094207
    [6] Wang Yu, Guo Jin-Li. Evaluation method of node importance in directed-weighted complex network based on multiple influence matrix. Acta Physica Sinica, 2017, 66(5): 050201. doi: 10.7498/aps.66.050201
    [7] Lu Chang-Bing, Xu Peng, Bao Jie, Wang Zhao-Hui, Zhang Kai, Ren Jie, Liu Yan-Feng. Simulation analysis and experimental verification of fast neutron radiography. Acta Physica Sinica, 2015, 64(19): 198702. doi: 10.7498/aps.64.198702
    [8] Zhang Fa-Qiang, Qi Jian-Min, Zhang Jian-Hua, Li Lin-Bo, Chen Ding-Yang, Xie Hong-Wei, Yang Jian-Lun, Chen Jin-Chuan. A method of fast-neutron imaging with energy threshold based on an imaging plate. Acta Physica Sinica, 2014, 63(12): 128701. doi: 10.7498/aps.63.128701
    [9] Zheng Wei-Fan, Zhang Ji-Ye, Wang Ming-Wen, Tang Dong-Ming. On traffic flow model with weighted look-ahead potential. Acta Physica Sinica, 2014, 63(22): 228901. doi: 10.7498/aps.63.228901
    [10] Feng Song, Liu Rong, Lu Xin-Xin, Yang Yi-Wei, Wang Mei, Jiang Li, Qin Jian-Guo. Determination of thorium fission rate by off-line method. Acta Physica Sinica, 2014, 63(16): 162501. doi: 10.7498/aps.63.162501
    [11] Wang Dan, Hao Bin-Bin. A weighted scale-free network model with high clustering and its synchronizability. Acta Physica Sinica, 2013, 62(22): 220506. doi: 10.7498/aps.62.220506
    [12] Wang Dan, Jin Xiao-Zheng. On weightd scale-free network model with tunable clustering and congesstion. Acta Physica Sinica, 2012, 61(22): 228901. doi: 10.7498/aps.61.228901
    [13] Lü Ling, Meng Le, Guo Li, Zou Jia-Rui, Yang Ming. Projective synchronization of a weighted network in a laser spatiotemporal chaos model. Acta Physica Sinica, 2011, 60(3): 030506. doi: 10.7498/aps.60.030506
    [14] Zhang Jie, Wang Shao-Feng. Effect of electron screening on the rapid neutron capture process. Acta Physica Sinica, 2010, 59(2): 1391-1395. doi: 10.7498/aps.59.1391
    [15] Zhang Fa-Qiang, Yang Jian-Lun, Li Zheng-Hong, Ye Fan, Xu Rong-Kun. Effects of secondary neutrons on fast-neutron image quality in thick scintillator. Acta Physica Sinica, 2009, 58(2): 1316-1320. doi: 10.7498/aps.58.1316
    [16] Zhang Fa-Qiang, Yang Jian-Lun, Li Zheng-Hong, Zhong Yao-Hua, Ye Fan, Qin Yi, Chen Fa-Xin, Ying Chun-Tong, Liu Guang-Jun. High-sensitivity fast neutron radiography system. Acta Physica Sinica, 2007, 56(1): 583-588. doi: 10.7498/aps.56.583
    [17] Pan Zao-Feng, Wang Xiao-Fan. A weighted scale-free network model with large-scale tunable clustering. Acta Physica Sinica, 2006, 55(8): 4058-4064. doi: 10.7498/aps.55.4058
    [18] Yang Shuai, Li Yang-Xian, Ma Qiao-Yun, Xu Xue-Wen, Niu Ping-Juan, Li Yong-Zhang, Niu Sheng-Li, Li Hong-Tao. FTIR study an VO2 defect in fast neutron irradiated Czochralski silicon. Acta Physica Sinica, 2005, 54(5): 2256-2260. doi: 10.7498/aps.54.2256
    [19] Li Yang-Xian, Yang Shuai, Chen Gui-Feng, Ma Qiao-Yun, Niu Ping-Juan, Chen Dong-Feng, Li Hong-Tao, Wang Bao-Yi. Investigation of the acceptor and donor in fast neutron irradiated Czochralski s ilicon. Acta Physica Sinica, 2005, 54(4): 1783-1787. doi: 10.7498/aps.54.1783
    [20] Lei JiaRong, Yuan Yong Gang, Zhao Lin, Zhao Min Zhi, Cui Gao Xian. Investigations of the photon fluences in various n+γ\=mixed fields in the fast neutron reactor. Acta Physica Sinica, 2003, 52(1): 53-57. doi: 10.7498/aps.52.53
Metrics
  • Abstract views:  244
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Received Date:  31 October 2024
  • Accepted Date:  24 November 2024
  • Available Online:  04 December 2024
  • Published Online:  20 January 2025

/

返回文章
返回