Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of periodic volatility on the stability of financial market

Zhou Ruo-Wei Li Jiang-Cheng Dong Zhi-Wei Li Yun-Xian Qian Zhen-Wei

Citation:

Influence of periodic volatility on the stability of financial market

Zhou Ruo-Wei, Li Jiang-Cheng, Dong Zhi-Wei, Li Yun-Xian, Qian Zhen-Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Various stochastic volatility models have been designed to model the variance of the asset price. Among these various models, the Heston model, as one-factor stochastic volatility mode, is the most popular and easiest to implement. Unfortunately, recent findings indicate that existing Heston modelis not able to characterize all aspects of asset returns, such as persistence, mean reverting, and clustering. Therefore, a modified Heston model is proposed in this paper. Compared with the original Heston model, the mean-reverting Cox Ingersoll and Ross process is modified to include a cosine term with the intention of capturing the periodicity of volatility. The phenomenon that high-volatile period is interchanged with low-volatile periods can thus be better described by adding such a period term to the volatility process. In addition, the geometric Brownian motion is replaced by a random walk in the presence of a cubic nonlinearity proposed by Bonanno et al. By doing so, a financial market with two different dynamical regimes (normal activity and extreme days) can be modeled. Closed-form solution for the modified Heston model is not derived in this paper. Instead, Monte-Carlo simulation is used to generate the probability density function of log-return which is then compared with the historical probability density function of stock return. Parameters are adjusted and estimated so that the square errors can be minimized. Daily returns of all the component stocks of Dow-Jones industrial index for the period from 3 September 2007 to 31 December 2008 are used to test the proposed model, and the experimental results demonstrate that the proposed model works very well. The mean escape time and mean periodic escape rate of the proposed modified Heston model with periodic stochastic volatility are studied in this paper with two different dynamical regimes like financial markets in normal activity and extreme days. Also the theoretical results of mean escape time and mean periodic escape rate can be calculated by numerical simulation. The experimental results demonstrate that 1) larger value of rate of return, smaller long run average of variance and smaller magnitude of periodic volatility will reduce the mean periodic escape rate, and thus stabilize the market; 2) by analyzing the mean escape time, an optimal value can be identified for the magnitude of periodic volatility which will maximize the mean escape time and again stabilize the market. In addition, an optimal rate of relaxation to long-time variance, smaller frequency of the periodic volatility, larger rate of return, and stronger correlation between noises will furtherreduce the mean escape time and enhance the market stability.
      Corresponding author: Li Jiang-Cheng, lijiangch@163.com
    • Funds: Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No.11225103),the National Natural Science Foundation of China (Grant Nos.11165016,71263056),the China Postdoctoral Science Foundation (Grant No.2015M572507),and Postdoctoral Directional Ttraining Project in Yunnan Province,China (Grant No.C6153005).
    [1]

    Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223

    [2]

    Mei D C, Du L C, Wang C J 2009 J. Stat. Phys. 137 625

    [3]

    Du L C, Mei D C 2012 Eur. Phys. J. B 85 1

    [4]

    Jia Y, Zheng X, Hu X, Li J 2001 Phys. Rev. E 63 293

    [5]

    Zhang X Y, Xu W, Zhou B C 2011 Acta Phys. Sin. 60 060514 (in Chinese)[张晓燕, 徐伟, 周丙常 2011 物理学报 60 060514]

    [6]

    Cao L, Wu D J 2007 Europhys. Lett. 61 593

    [7]

    Shen C S, Zhang J Q, Chen H S 2007 Acta Phys. Sin. 56 6315 (in Chinese)[申传胜, 张季谦, 陈含爽 2007 物理学报 56 6315]

    [8]

    Spagnolo B, Valenti D, Fiasconaro A 2004 Math. Biosci. Eng. 1 185

    [9]

    Valenti D, Fiasconaro A, Spagnolo B 2004 Physica A 331 477

    [10]

    Bonanno G, Spagnolo B, Valenti D 2008 Int. J. Bifurcat. Chaos 18 2775

    [11]

    Bonanno G, Spagnolo B 2005 Fluct. Noise Lett. 5 325

    [12]

    Jia Z L 2008 Physica A 387 6247

    [13]

    Yoshimoto M, Shirahama H, Kurosawa S 2008 J. Chem. Phys. 129 014508

    [14]

    Zeng C H, Zhang C, Zeng J K, Liu R F, Wang H 2015 J. Stat. Mech. 2015 08027

    [15]

    Krawiecki A, Holyst J A 2003 Physica A 317 597

    [16]

    Babinec P 2002 Chaos 13 1767

    [17]

    Li J C, Mei D C 2013 Phys. Rev. E 88 012811

    [18]

    Bonanno G, Valenti D, Spagnolo B 2007 Phys. Rev. E 75 016106

    [19]

    Bonanno G, Valenti D, Spagnolo B 2006 Eur. Phys. J. B 53 405

    [20]

    Valenti D, Spagnolo B, Bonanno G 2007 Physica A 382 311

    [21]

    Masoliver J, Perell J 2009 Phys. Rev. E 80 016108

    [22]

    Masoliver J, Perell J 2008 Phys. Rev. E 78 056104

    [23]

    Zhou W X 2007 Introduction to Econophysics (Shanghai:Shanghai University of Finance & Economics Press) pp1-14 (in Chinese)[周炜星 2007 金融物理学导论 (上海:上海财经大学出版社) 第1–14 页]

    [24]

    Yalama A, Celik S 2013 Econ. Model. 30 67

    [25]

    Baaquie B E 1997 J. Phys. I 7 1733

    [26]

    Angelovska J 2010 VaR based on SMA, EWMA and GARCH(1, 1) Volatility Models (Germany:VDM Verlag Dr. Müller) pp1-5

    [27]

    Andersen T G, Tim B, Diebold F X, Paul L 2001 Econometrica 71 579

    [28]

    Bouchaud J P, Potters M 2000 Mpra. Paper 285 18

    [29]

    Gencay R, Dacorogna M, Muller U A, Pictet O, Olsen R 2001 An Introduction to High-Frequency Finance (America:Academic Press) pp1-10

    [30]

    Bollerslev T 1986 J. Econom. 31 307

    [31]

    Ding Z, Granger C W J, Engle R F 1993 J. Empir. Financ. 1 83

    [32]

    Bansal R, Kiku D, Shaliastovich I, Yaron A 2014 J. Financ. 69 2471

    [33]

    Jebabli I, Arouri M, Teulon F 2014 Energ. Econ. 45 66

    [34]

    Heston S L 1993 Rev. Financ. Stud. 6 327

    [35]

    Forde M, Jacquier A, Lee R 2012 SIAM J. Financ. Math. 3 690

    [36]

    Drǎgulescu A A, Yakovenko V M 2002 Quant. Financ. 2 443

    [37]

    Poon S H, Granger C W J 2003 J. Econ. Literature 41 478

    [38]

    Fouque J P, Papanicolaou G, Sircar R, Solna K 2004 Financ. Stoch. 8 451

    [39]

    Cox J C, Ingersoll Jr J E, Ross S A 1985 Econometrica 385

    [40]

    Lux T, Marchesi M 2000 IJTAF 03 675

    [41]

    Gopikrishnan P M, Martin Amaral, Nunes L, Stanley H E 1998 Eur. Phys. J. B 3 139

    [42]

    Lillo F, Mantegna R N 2000 Phys. Rev. E 62 6126

  • [1]

    Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223

    [2]

    Mei D C, Du L C, Wang C J 2009 J. Stat. Phys. 137 625

    [3]

    Du L C, Mei D C 2012 Eur. Phys. J. B 85 1

    [4]

    Jia Y, Zheng X, Hu X, Li J 2001 Phys. Rev. E 63 293

    [5]

    Zhang X Y, Xu W, Zhou B C 2011 Acta Phys. Sin. 60 060514 (in Chinese)[张晓燕, 徐伟, 周丙常 2011 物理学报 60 060514]

    [6]

    Cao L, Wu D J 2007 Europhys. Lett. 61 593

    [7]

    Shen C S, Zhang J Q, Chen H S 2007 Acta Phys. Sin. 56 6315 (in Chinese)[申传胜, 张季谦, 陈含爽 2007 物理学报 56 6315]

    [8]

    Spagnolo B, Valenti D, Fiasconaro A 2004 Math. Biosci. Eng. 1 185

    [9]

    Valenti D, Fiasconaro A, Spagnolo B 2004 Physica A 331 477

    [10]

    Bonanno G, Spagnolo B, Valenti D 2008 Int. J. Bifurcat. Chaos 18 2775

    [11]

    Bonanno G, Spagnolo B 2005 Fluct. Noise Lett. 5 325

    [12]

    Jia Z L 2008 Physica A 387 6247

    [13]

    Yoshimoto M, Shirahama H, Kurosawa S 2008 J. Chem. Phys. 129 014508

    [14]

    Zeng C H, Zhang C, Zeng J K, Liu R F, Wang H 2015 J. Stat. Mech. 2015 08027

    [15]

    Krawiecki A, Holyst J A 2003 Physica A 317 597

    [16]

    Babinec P 2002 Chaos 13 1767

    [17]

    Li J C, Mei D C 2013 Phys. Rev. E 88 012811

    [18]

    Bonanno G, Valenti D, Spagnolo B 2007 Phys. Rev. E 75 016106

    [19]

    Bonanno G, Valenti D, Spagnolo B 2006 Eur. Phys. J. B 53 405

    [20]

    Valenti D, Spagnolo B, Bonanno G 2007 Physica A 382 311

    [21]

    Masoliver J, Perell J 2009 Phys. Rev. E 80 016108

    [22]

    Masoliver J, Perell J 2008 Phys. Rev. E 78 056104

    [23]

    Zhou W X 2007 Introduction to Econophysics (Shanghai:Shanghai University of Finance & Economics Press) pp1-14 (in Chinese)[周炜星 2007 金融物理学导论 (上海:上海财经大学出版社) 第1–14 页]

    [24]

    Yalama A, Celik S 2013 Econ. Model. 30 67

    [25]

    Baaquie B E 1997 J. Phys. I 7 1733

    [26]

    Angelovska J 2010 VaR based on SMA, EWMA and GARCH(1, 1) Volatility Models (Germany:VDM Verlag Dr. Müller) pp1-5

    [27]

    Andersen T G, Tim B, Diebold F X, Paul L 2001 Econometrica 71 579

    [28]

    Bouchaud J P, Potters M 2000 Mpra. Paper 285 18

    [29]

    Gencay R, Dacorogna M, Muller U A, Pictet O, Olsen R 2001 An Introduction to High-Frequency Finance (America:Academic Press) pp1-10

    [30]

    Bollerslev T 1986 J. Econom. 31 307

    [31]

    Ding Z, Granger C W J, Engle R F 1993 J. Empir. Financ. 1 83

    [32]

    Bansal R, Kiku D, Shaliastovich I, Yaron A 2014 J. Financ. 69 2471

    [33]

    Jebabli I, Arouri M, Teulon F 2014 Energ. Econ. 45 66

    [34]

    Heston S L 1993 Rev. Financ. Stud. 6 327

    [35]

    Forde M, Jacquier A, Lee R 2012 SIAM J. Financ. Math. 3 690

    [36]

    Drǎgulescu A A, Yakovenko V M 2002 Quant. Financ. 2 443

    [37]

    Poon S H, Granger C W J 2003 J. Econ. Literature 41 478

    [38]

    Fouque J P, Papanicolaou G, Sircar R, Solna K 2004 Financ. Stoch. 8 451

    [39]

    Cox J C, Ingersoll Jr J E, Ross S A 1985 Econometrica 385

    [40]

    Lux T, Marchesi M 2000 IJTAF 03 675

    [41]

    Gopikrishnan P M, Martin Amaral, Nunes L, Stanley H E 1998 Eur. Phys. J. B 3 139

    [42]

    Lillo F, Mantegna R N 2000 Phys. Rev. E 62 6126

  • [1] Xiao Jiang-Ping, Dai Dong, Victor F. Tarasenko, Shao Tao. Mechanism of runaway electron generation in nanosecond pulsed plate-plate discharge at atmospheric-pressure air. Acta Physica Sinica, 2023, 72(10): 105201. doi: 10.7498/aps.72.20222409
    [2] Zhang Mao-Fang, You Hui-Min, Yin Xiang-Guo, Zhang Yun-Bo. Particle escape problem in semi-open system. Acta Physica Sinica, 2022, 71(16): 167302. doi: 10.7498/aps.71.20220450
    [3] Chen Jiang-Zhi, Yang Chen-Wen, Ren Jie. Machine learning based on wave and diffusion physical systems. Acta Physica Sinica, 2021, 70(14): 144204. doi: 10.7498/aps.70.20210879
    [4] Feng Ling, Ji Wan-Ni. Pricing of stochastic volatility stock index option based on Feynman path integral. Acta Physica Sinica, 2019, 68(20): 203101. doi: 10.7498/aps.68.20190714
    [5] Zhang Yan-Hui, Shen Zhi-Peng, Cai Xiang-Ji, Xu Xiu-Lan, Gao Song. Fractal dimensions and escape rates in the two-dimensional Hénon-Heiles potential and its deformation form. Acta Physica Sinica, 2015, 64(23): 230501. doi: 10.7498/aps.64.230501
    [6] Zhang Cheng, Ma Hao, Shao Tao, Xie Qing, Yang Wen-Jin, Yan Ping. Runaway electron beams in nanosecond-pulse discharges. Acta Physica Sinica, 2014, 63(8): 085208. doi: 10.7498/aps.63.085208
    [7] Leng Yong-Gang, Lai Zhi-Hui. Generalized parameter-adjusted stochastic resonance of Duffing oscillator based on Kramers rate. Acta Physica Sinica, 2014, 63(2): 020502. doi: 10.7498/aps.63.020502
    [8] Li Ming, Chen Jun, Gong Jian. Dwell time and escape tunneling in InAs/InP cylindrical quantum wire. Acta Physica Sinica, 2014, 63(23): 237303. doi: 10.7498/aps.63.237303
    [9] Shen Zhi-Peng, Zhang Yan-Hui, Cai Xiang-Ji, Zhao Guo-Peng, Zhang Qiu-Ju. Escape rates of particles in Stadium mesoscopic devices. Acta Physica Sinica, 2014, 63(17): 170509. doi: 10.7498/aps.63.170509
    [10] Wu Jian-Jun, Xu Shang-Yi, Sun Hui-Jun. Detrended fluctuation analysis of time series in mixed traffic flow. Acta Physica Sinica, 2011, 60(1): 019502. doi: 10.7498/aps.60.019502
    [11] Lu Hong-Wei, Hu Li-Qun, Zhou Rui-Jie, Xu Ping, Zhong Guo-Qiang, Lin Shi-Yao, Wang Shao-Feng. Runaway electrons behaviors during ion cycolotron range of frequency and lower hybrid wave plasmas in the HT-7 Tokamak. Acta Physica Sinica, 2010, 59(10): 7175-7181. doi: 10.7498/aps.59.7175
    [12] Leng Yong-Gang. Mechanism of parameter-adjusted stochastic resonance based on Kramers rate. Acta Physica Sinica, 2009, 58(8): 5196-5200. doi: 10.7498/aps.58.5196
    [13] Li Xiao-Jing. The periodic solutions of El Nino mechanism of atmospheric physics. Acta Physica Sinica, 2008, 57(9): 5366-5368. doi: 10.7498/aps.57.5366
    [14] Zhao Hai-Jun, Du Meng-Li. Escaping problem in the Hénon-Heiles system and numerical algorithms. Acta Physica Sinica, 2007, 56(7): 3827-3832. doi: 10.7498/aps.56.3827
    [15] Shao Tao, Sun Guang-Sheng, Yan Ping, Gu Chen, Zhang Shi-Chang. Calculation on runaway process of high-energy fast electrons under nanosecond-pulse. Acta Physica Sinica, 2006, 55(11): 5964-5968. doi: 10.7498/aps.55.5964
    [16] Deng Wen-Ji. . Acta Physica Sinica, 2002, 51(6): 1171-1174. doi: 10.7498/aps.51.1171
    [17] WANG REN-ZHI, ZHENG YONG-MEI, LI SHU-PING. STUDY ON PHYSICAL CONNOTATION OF AVERAGE BOND ENERGY Em. Acta Physica Sinica, 2001, 50(2): 273-277. doi: 10.7498/aps.50.273
    [18] ZHOU XIAO-BING, ZHAO CHANG-LIN. TRANSITION BETWEEN TRAPPED ELECTRONS AND RUNAWAY ELECTRONS INDUCED BY ELECTRON CYCLOTRON WAVE IN MAGNETIC MIRROR PLASMA. Acta Physica Sinica, 1993, 42(8): 1257-1265. doi: 10.7498/aps.42.1257
    [19] XIA MENG-FEN, ZHOU RU-LING. INSTABILITIES DUE TO RUNAWAY ELECTRONS. Acta Physica Sinica, 1980, 29(6): 788-793. doi: 10.7498/aps.29.788
    [20] KANG SHOU-WAN, CAI SHI-DONG. THE CRITICAL VELOCITY OF RUNAWAY ELECTRONS IN A MAGNETIZED PLASMA. Acta Physica Sinica, 1980, 29(3): 311-319. doi: 10.7498/aps.29.311
Metrics
  • Abstract views:  6607
  • PDF Downloads:  433
  • Cited By: 0
Publishing process
  • Received Date:  23 May 2016
  • Accepted Date:  29 November 2016
  • Published Online:  05 February 2017

/

返回文章
返回