Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A passive range method of underwater source based on single hydrophone

Li Xiao-Man Piao Sheng-Chun Zhang Ming-Hui Liu Ya-Qin Zhou Jian-Bo

Citation:

A passive range method of underwater source based on single hydrophone

Li Xiao-Man, Piao Sheng-Chun, Zhang Ming-Hui, Liu Ya-Qin, Zhou Jian-Bo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Aiming at the passive impulse wideband source range problem in shallow water waveguides, a passive source range method with single hydrophone which is applied to the shallow water waveguide with a bottom of liquid semi-infinite space is presented in this paper by combining the group delay theory and warping transformation. The receive signal is composed of several normal modes, and each mode represents many characteristics of the waveguide environment. Warping transformation is a good tool which can achieve the separation and extraction of normal modes from the received signal, and it is also an unitary and reversible transformation, so the warped signal of each normal mode can be recovered completely. The dispersion curves of normal modes can be extracted by warping transformation, and the relation between arrival time and frequency of each order normal mode can also be calculated, and then the time delay of arriving hydrophone between arbitrary two different normal modes is obtained. According to the group delay theory, different order normal mode has different arrival time at the same frequency, and the arrival time of normal mode is determined at its group speed when the distance between the source and hydrophone is certain. So the propagation range can be estimated when the time delay and the slow group speed difference between two different normal modes are known. When the waveguide environmental parameters are known, the slow group speed difference of arbitrary two normal modes can be calculated by KRAKEN. However, when the bottom parameters are unknown, the bottom reflection phase shift parameter is an important parameter describing the acoustic parameters of the bottom, and it contains nearly all the bottom information, what is more, the bottom reflection phase shift parameter is also a parameter that can be extracted by some experimental data easily. When the depth and the average sound speed of the water column are known, the slow group speed difference between two order normal modes can be represented by the seafloor phase shift parameter. Therefore, the source range can be represented by the bottom reflection phase shift parameter, the sea depth and the mean sound speed in the waveguide, and under this condition, the source location can be estimated by one single hydrophone. The effectiveness and accuracy of the method are proved by the numerical simulation results and sea experimental data processing, in which the signals are both received by a single hydrophone. The sea experimental data contain linear frequency modulation impulse source signal and explosion sound source signal, and the mean relative error of range estimation is less than 10%.
      Corresponding author: Zhang Ming-Hui, zhangminghui@hrbeu.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No.112340002) and the National Natural Science Foundation of China (Grant No. 11474073).
    [1]

    Li Q Q 2016 Chin. Phys. Lett. 33 034301

    [2]

    Li Q Q, Li Z L, Zhang R H 2013 Chin. Phys. Lett. 30 024301

    [3]

    Hassab J 1983 IEEE J. Oceanic Eng. 8 136

    [4]

    Zhao Z D, Wang N, Gao D Z, Wang H Z 2010 Chin. Phys. Lett. 27 064301

    [5]

    Bonnel J, Chapman N R 2011 J. Acoust. Soc. Am. 130 101

    [6]

    Brown J C, Hodgins D A, Miller P J O 2006 J. Acoust. Soc. Am. 119 EL34

    [7]

    Ioana C, Quinquis A, Stephan Y 2006 IEEE J. Oceanic Eng. 31 628

    [8]

    Bonnel J, Dosso S E, Chapman R N 2013 J. Acoust. Soc. Am. 134 120

    [9]

    Zeng J, Chapman N R, Bonnel J 2013 J. Acoust. Soc. Am. 134 394

    [10]

    Lin Y T, Newhall A E, Lynch J F 2012 J. Acoust. Soc. Am. 131 1798

    [11]

    Zhou S H, Qi Y B, Ren Y 2014 Sci. China:Phys. Mech. Astron. 57 225

    [12]

    Wang D, Guo L H, Liu J J, Qi Y B 2016 Acta Phys. Sin. 65 104302(in Chinese)[王冬, 郭良浩, 刘建军, 戚聿波2016物理学报 65 104302]

    [13]

    Qi Y B, Zhou S H, Zhang R H, Zhang B, Zhang Y 2014 Acta Phys. Sin. 63 044303(in Chinese)[戚聿波, 周士弘, 张仁和, 张波, 张云2014物理学报 63 044303]

    [14]

    Bonnel J, Gervaise C, Nicolas B, Mars J I 2012 J. Acoust. Soc. Am. 131 119

    [15]

    Bonnel J, Thode A M, Blackwell S B, Kim K, Michael M A 2014 J. Acoust. Soc. Am. 136 145

    [16]

    Zhang R H, Li F H 1999 Sci. China A 29 241(in Chinese)[张仁和, 李风华1999中国科学A辑 29 241]

    [17]

    Wang D Z, Shang E C 2009 Underwater Acoustics (2nd Ed.) (Harbin:Harbin Engineering University Press) pp628-640(in Chinese)[汪德昭, 尚尔昌2009水声学(第二版) (哈尔滨:哈尔滨工程大学出版社)第628–640页]

    [18]

    Bonnel J, Gervaise C, Nicolas B, Mars J I 2010 J. Acoust. Soc. Am. 128 719

    [19]

    Baraniuk R, Jones D 1995 IEEE Trans. Signal Proc. 43 2269

    [20]

    Touze G L, Nicolas B, Mars J I 2009 IEEE Trans. Signal Proc. 57 1783

    [21]

    Niu H Q 2014 Ph. D. Dissertation (Beijing:University of Chinese Academy of Sciences) (in Chinese)[牛海强2014博士学位论文(北京:中国科学院大学)]

    [22]

    Shang E C, Wu J R, Zhao Z D 2012 J. Acoust. Soc. Am. 131 3691

    [23]

    Li X M, Zhang M H, Zhang H G, Piao S C, Liu Y Q, Zhou J B 2017 Acta Phys. Sin. 66 094302(in Chinese)[李晓曼, 张明辉, 张海刚, 朴胜春, 刘亚琴, 周建波2017物理学报 66 094302]

  • [1]

    Li Q Q 2016 Chin. Phys. Lett. 33 034301

    [2]

    Li Q Q, Li Z L, Zhang R H 2013 Chin. Phys. Lett. 30 024301

    [3]

    Hassab J 1983 IEEE J. Oceanic Eng. 8 136

    [4]

    Zhao Z D, Wang N, Gao D Z, Wang H Z 2010 Chin. Phys. Lett. 27 064301

    [5]

    Bonnel J, Chapman N R 2011 J. Acoust. Soc. Am. 130 101

    [6]

    Brown J C, Hodgins D A, Miller P J O 2006 J. Acoust. Soc. Am. 119 EL34

    [7]

    Ioana C, Quinquis A, Stephan Y 2006 IEEE J. Oceanic Eng. 31 628

    [8]

    Bonnel J, Dosso S E, Chapman R N 2013 J. Acoust. Soc. Am. 134 120

    [9]

    Zeng J, Chapman N R, Bonnel J 2013 J. Acoust. Soc. Am. 134 394

    [10]

    Lin Y T, Newhall A E, Lynch J F 2012 J. Acoust. Soc. Am. 131 1798

    [11]

    Zhou S H, Qi Y B, Ren Y 2014 Sci. China:Phys. Mech. Astron. 57 225

    [12]

    Wang D, Guo L H, Liu J J, Qi Y B 2016 Acta Phys. Sin. 65 104302(in Chinese)[王冬, 郭良浩, 刘建军, 戚聿波2016物理学报 65 104302]

    [13]

    Qi Y B, Zhou S H, Zhang R H, Zhang B, Zhang Y 2014 Acta Phys. Sin. 63 044303(in Chinese)[戚聿波, 周士弘, 张仁和, 张波, 张云2014物理学报 63 044303]

    [14]

    Bonnel J, Gervaise C, Nicolas B, Mars J I 2012 J. Acoust. Soc. Am. 131 119

    [15]

    Bonnel J, Thode A M, Blackwell S B, Kim K, Michael M A 2014 J. Acoust. Soc. Am. 136 145

    [16]

    Zhang R H, Li F H 1999 Sci. China A 29 241(in Chinese)[张仁和, 李风华1999中国科学A辑 29 241]

    [17]

    Wang D Z, Shang E C 2009 Underwater Acoustics (2nd Ed.) (Harbin:Harbin Engineering University Press) pp628-640(in Chinese)[汪德昭, 尚尔昌2009水声学(第二版) (哈尔滨:哈尔滨工程大学出版社)第628–640页]

    [18]

    Bonnel J, Gervaise C, Nicolas B, Mars J I 2010 J. Acoust. Soc. Am. 128 719

    [19]

    Baraniuk R, Jones D 1995 IEEE Trans. Signal Proc. 43 2269

    [20]

    Touze G L, Nicolas B, Mars J I 2009 IEEE Trans. Signal Proc. 57 1783

    [21]

    Niu H Q 2014 Ph. D. Dissertation (Beijing:University of Chinese Academy of Sciences) (in Chinese)[牛海强2014博士学位论文(北京:中国科学院大学)]

    [22]

    Shang E C, Wu J R, Zhao Z D 2012 J. Acoust. Soc. Am. 131 3691

    [23]

    Li X M, Zhang M H, Zhang H G, Piao S C, Liu Y Q, Zhou J B 2017 Acta Phys. Sin. 66 094302(in Chinese)[李晓曼, 张明辉, 张海刚, 朴胜春, 刘亚琴, 周建波2017物理学报 66 094302]

  • [1] Liu Xin-Yu, Yang Su-Hui, Liao Ying-Qi, Lin Xue-Tong. Laser underwater ranging based on wavelet transform. Acta Physica Sinica, 2021, 70(18): 184205. doi: 10.7498/aps.70.20210569
    [2] Gao De-Yang, Gao Da-Zhi, Chi Jing, Wang Liang, Song Wen-Hua. Doppler-warping transform and its application to estimating acoustic target velocity. Acta Physica Sinica, 2021, 70(12): 124302. doi: 10.7498/aps.70.20201653
    [3] Liu Ping, Xu Heng-Rui, Yang Jian-Rong. The Boussinesq equation: Lax pair, Bäcklund transformation, symmetry group transformation and consistent Riccati expansion solvability. Acta Physica Sinica, 2020, 69(1): 010203. doi: 10.7498/aps.69.20191316
    [4] Meng Rui-Jie, Zhou Shi-Hong, Li Feng-Hua, Qi Yu-Bo. Identification of interference normal mode pairs of low frequency sound in shallow water. Acta Physica Sinica, 2019, 68(13): 134304. doi: 10.7498/aps.68.20190221
    [5] Li Jia-Wei, Lu Li-Cheng, Guo Sheng-Ming, Ma Li. Inversion of seabed attenuation by using single mode extracted by warping transform. Acta Physica Sinica, 2017, 66(20): 204301. doi: 10.7498/aps.66.204301
    [6] Li Xiao-Man, Zhang Ming-Hui, Zhang Hai-Gang, Piao Sheng-Chun, Liu Ya-Qin, Zhou Jian-Bo. A passive range method of broadband impulse source based on matched-mode processing. Acta Physica Sinica, 2017, 66(9): 094302. doi: 10.7498/aps.66.094302
    [7] Qi Yu-Bo, Zhou Shi-Hong, Zhang Ren-He. Warping transform of the refractive normal mode in a shallow water waveguide. Acta Physica Sinica, 2016, 65(13): 134301. doi: 10.7498/aps.65.134301
    [8] Wang Dong, Guo Liang-Hao, Liu Jian-Jun, Qi Yu-Bo. Passive impulsive source range estimation based on warping operator in shallow water. Acta Physica Sinica, 2016, 65(10): 104302. doi: 10.7498/aps.65.104302
    [9] Lu Li-Cheng, Ma Li. Analysis of waveguide time-frequency based on Warping transform. Acta Physica Sinica, 2015, 64(2): 024305. doi: 10.7498/aps.64.024305
    [10] Qi Yu-Bo, Zhou Shi-Hong, Zhang Ren-He, Ren Yun. A passive source ranging method using the waveguide-invariant-warping operator. Acta Physica Sinica, 2015, 64(7): 074301. doi: 10.7498/aps.64.074301
    [11] Zhu Liang-Ming, Li Feng-Hua, Sun Mei, Chen De-Sheng. Source ranging based on frequency band decomposition and distance weighting using a single acoustic vector sensor in shallow water. Acta Physica Sinica, 2015, 64(15): 154303. doi: 10.7498/aps.64.154303
    [12] Zhang Yu, Liu Bing-Qi, Yan Zong-Qun, Hua Wen-Shen, Li Gang. Influence of background radiation on the precision of passive ranging. Acta Physica Sinica, 2015, 64(3): 034216. doi: 10.7498/aps.64.034216
    [13] Qi Yu-Bo, Zhou Shi-Hong, Zhang Ren-He, Zhang Bo, Ren Yun. Modal characteristic frequency in a range-dependent shallow-water waveguide and its application to passive source range estimation. Acta Physica Sinica, 2014, 63(4): 044303. doi: 10.7498/aps.63.044303
    [14] An Yong-Quan, Li Jin-Hua, Wang Zhi-Bin, Wang Zhao-Ba. Mono-station and single-band passive ranging based on oxygen spectrum. Acta Physica Sinica, 2013, 62(14): 144210. doi: 10.7498/aps.62.144210
    [15] Deng Yu-Qiang, Sun Qing, Yu Jing. Direct measurement of group delay of optical elements. Acta Physica Sinica, 2011, 60(2): 028102. doi: 10.7498/aps.60.028102
    [16] Zhang Jing, Zhang Yun-Dong, Zhang Xue-Nan, Yu Bo, Wang Jin-Fang, Wang Nan, Tian He, Yuan Ping. Characteristics of subluminal for optical resonators. Acta Physica Sinica, 2011, 60(2): 024218. doi: 10.7498/aps.60.024218
    [17] Jia Fei-Lei, Xu Wei. Lag synchronization for a class of chaotic systems with unknown parameters. Acta Physica Sinica, 2007, 56(6): 3101-3106. doi: 10.7498/aps.56.3101
    [18] Lu Wei-Guo, Zhou Luo-Wei, Luo Quan-Ming, Du Xiong. Time-delayed feedback control of chaos in BOOST converter and its optimization. Acta Physica Sinica, 2007, 56(11): 6275-6281. doi: 10.7498/aps.56.6275
    [19] Jia Ya-Qing, Zhu Xiao-Nong. Study on dispersion characteristics of a tilted birefringent filter. Acta Physica Sinica, 2004, 53(9): 3065-3070. doi: 10.7498/aps.53.3065
    [20] . Acta Physica Sinica, 1964, 20(7): 691-695. doi: 10.7498/aps.20.691
Metrics
  • Abstract views:  6333
  • PDF Downloads:  185
  • Cited By: 0
Publishing process
  • Received Date:  08 May 2017
  • Accepted Date:  08 June 2017
  • Published Online:  05 September 2017

/

返回文章
返回