Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structural and optoelectronic properties of p-type SiO:H films deposited in transition zone

Li Tong-Kai Xu Zheng Zhao Su-Ling Xu Xu-Rong Xue Jun-Ming

Citation:

Structural and optoelectronic properties of p-type SiO:H films deposited in transition zone

Li Tong-Kai, Xu Zheng, Zhao Su-Ling, Xu Xu-Rong, Xue Jun-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • P-type hydrogenated silicon oxide (p-SiOx:H) films are prepared by radio frequency plasma enhanced chemical deposition with various CO2 flow rates. We use gas mixtures of carbon dioxide (CO2), hydrogen (H2), silane (SiH4) and diborane (B2H6) as reaction source gases. For all experiments the substrate temperature, pressure and power density are fixed at 200 oC, 200 Pa and 200 mW/cm2, respectively. The films are deposited on Corning Eagle 2000 glass substrates for optoelectronic measurements and on crystalline Si wafers for Fourier transform infrared (FTIR) measurement. The structural, optical and electronic properties of the films are systematically studied as a function of CO2 flow rate. The CO2 flow rate is varied from 0 to 1.2 cm3 min-1, with all other parameters kept constant. It is shown that with the CO2 flow rate increasing from 0 to 1.2 cm3 min-1, the Raman peak shifts from 520 cm-1 to 480 cm-1 and corresponding crystalline volume fraction decreases from 70% to 0. In addition, the FTIR spectrum shows that the oxygen content increases from 0 to 17% and the hydrogen bond configuration gradually shifts from mono-hydrogen (Si-H) to di-hydrogen (Si-H2) and (Si-H2)n complexes in the film. What is more, with the incorporation of oxygen, the optical band gap of each of all p-type SiO:H films increases from 1.8 eV to 2.13 eV, while the dark conductivity decreases from 3 S/cm (nc-Si:H phase) to 8.310-6 S/cm (a-SiOx:H phase). Furthermore, the oxygen incorporation tends to disrupt the growth of silicon nanocrystals due to the created dangling bonds that arises from an increased structural disorder. This leads to microstructural evolution of SiO:H film from a single nanocrystalline phase into first a mixed amorphous-nanocrystalline and subsequently into an amorphous phase. At a certain threshold of CO2 flow rate, a transition from nanocrystalline to amorphous growth takes place. The transition from nanocrystalline to amorphous silicon is confirmed by Raman and FTIR spectra. In the transition region or crystalline volume fraction of about 45%, Raman spectrum also reveals that the a mixture of nanocrystalline silicon and amorphous silicon oxide (a-SiOx:H) phase exists in the film. This means that nanocrystalline silicon oxide (nc-SiO:H) is a two-phase structural material consisting of a dispersion of silicon nanocrystals (nc-Si) embedded in the amorphous SiOx network. As is well known, the oxygen-rich amorphous phase can help enhance the optical band gap, while the nc-Si phase contributes to high conductivity. Finally, it is the SiO:H film deposited at phase transition that can realize a relatively high dark conductivity (about S/cm) with a wide optical band gap of 2.01 eV in the film. By using the transition p-layer as the window layer in conjunction with a suitable buffer thickness, we obtain a thin film solar cell with an open-circuit voltage of 890 mV, a short-circuit current density of 12.77 mAcm-2, fill factor of 0.73, and efficiency of 8.27% without using any back reflector.
      Corresponding author: Xu Zheng, zhengxu@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61575019).
    [1]

    Lambertz A, Finger F, Hollnder B, Rath J K, Schropp R E 2012 J. Non-Cryst. Solids 358 1962

    [2]

    Zacharias M, Freistedt H, Stolze F 1993 J. Non-Cryst. Solids 164 1089

    [3]

    Naka yama Y M, Uecha T, Ikeda M 1996 J. Non-Cryst. Solids 198 915

    [4]

    Kobsak S, Nopphadol S, Puchong S 2011 Curr. Appl. Phys. 11 S47

    [5]

    Matsumoto Y, Mele Hndez F, Asomoza R 2001 Sol. Energy Mater. Sol. Cells 66 163

    [6]

    Yoon K, Kim Y, Park J, Shin C H, Baek S, Jang J, Iftiquar S M, Yi J 2011 J. Non-Cryst. Solids 357 2826

    [7]

    Liu H X, Yang Y B, Liu J P, Jiang Z Y, Yu W, Fu G S 2016 J. Alloys Compod. 671 532

    [8]

    Liao X B, Du W H 2006 J. Non-Cryst. Solids 352 1841

    [9]

    Yue G, Lorentzen J D, Lin J, Wang Q, Han D 1999 Appl. Phys. Lett. 75 492

    [10]

    Arup S, Debajyoti D 2009 Sol. Energy Mater. Sol. Cells 93 588

    [11]

    Iftiquar S M 1998 J. Phys. D:Appl. Phys. 31 1630

    [12]

    Haga K, Watanabe H 1996 J. Non-Cryst. Solids 195 72

    [13]

    He L, Inokuma T, Kurata Y, Hasegawa S 1995 J. Non-Cryst. Solids 185 249

    [14]

    Lucovsky G, Yang J, Chao S S, Tyler J E, Czubatyj W 1983 Phys. Rev. B 283 225

    [15]

    Kichan Y, Youngkuk K, JinJoo P J 2011 J. Non-Cryst. Solids 357 2826

    [16]

    Daey Ouwens J, Schropp R E I 1996 Phys. Rev. B 177 59

    [17]

    Dalal V, Knox R, Moradi B 1993 Sol. Energy Mater. Sol. Cells 31 349

    [18]

    Chang T H, Chang J Y, Chu Y H 2013 Surf. Coat. Technol. 231 604

    [19]

    Yang L, Abeles B, Eberhardt W, Sondericker D 1989 IEEE Trans. Electron Dev. 36 2798

    [20]

    Mahan A H, Nelson B P, Salamon S, Crandall R S 1991 J. Non-Cryst. Solids 137 657

    [21]

    Wang S, Wang Q, Zhang X D 2012 Proceedings of the 12th China PV Conference Beijing, September 2-7, 2012 p163

    [22]

    Buehlmann P, Bailat J, Domin D, Billet A, Meillaud F, Feltrin A, Ballif C 2007 Appl. Phys. Lett. 143 505

    [23]

    Zhang S B, Liao X B, An L, Kong G L, Wang Y Q 2002 Acta Phys. Sin. 51 1811 (in Chinese)[张世斌, 廖显伯, 安龙, 孔光临, 王永谦 2002 物理学报 51 1811]

    [24]

    Qiao Z, Xie X J, Hao Q Y, Wen D, Xue J M, Liu C C 2015 Appl. Surf. Sci. 324 152

  • [1]

    Lambertz A, Finger F, Hollnder B, Rath J K, Schropp R E 2012 J. Non-Cryst. Solids 358 1962

    [2]

    Zacharias M, Freistedt H, Stolze F 1993 J. Non-Cryst. Solids 164 1089

    [3]

    Naka yama Y M, Uecha T, Ikeda M 1996 J. Non-Cryst. Solids 198 915

    [4]

    Kobsak S, Nopphadol S, Puchong S 2011 Curr. Appl. Phys. 11 S47

    [5]

    Matsumoto Y, Mele Hndez F, Asomoza R 2001 Sol. Energy Mater. Sol. Cells 66 163

    [6]

    Yoon K, Kim Y, Park J, Shin C H, Baek S, Jang J, Iftiquar S M, Yi J 2011 J. Non-Cryst. Solids 357 2826

    [7]

    Liu H X, Yang Y B, Liu J P, Jiang Z Y, Yu W, Fu G S 2016 J. Alloys Compod. 671 532

    [8]

    Liao X B, Du W H 2006 J. Non-Cryst. Solids 352 1841

    [9]

    Yue G, Lorentzen J D, Lin J, Wang Q, Han D 1999 Appl. Phys. Lett. 75 492

    [10]

    Arup S, Debajyoti D 2009 Sol. Energy Mater. Sol. Cells 93 588

    [11]

    Iftiquar S M 1998 J. Phys. D:Appl. Phys. 31 1630

    [12]

    Haga K, Watanabe H 1996 J. Non-Cryst. Solids 195 72

    [13]

    He L, Inokuma T, Kurata Y, Hasegawa S 1995 J. Non-Cryst. Solids 185 249

    [14]

    Lucovsky G, Yang J, Chao S S, Tyler J E, Czubatyj W 1983 Phys. Rev. B 283 225

    [15]

    Kichan Y, Youngkuk K, JinJoo P J 2011 J. Non-Cryst. Solids 357 2826

    [16]

    Daey Ouwens J, Schropp R E I 1996 Phys. Rev. B 177 59

    [17]

    Dalal V, Knox R, Moradi B 1993 Sol. Energy Mater. Sol. Cells 31 349

    [18]

    Chang T H, Chang J Y, Chu Y H 2013 Surf. Coat. Technol. 231 604

    [19]

    Yang L, Abeles B, Eberhardt W, Sondericker D 1989 IEEE Trans. Electron Dev. 36 2798

    [20]

    Mahan A H, Nelson B P, Salamon S, Crandall R S 1991 J. Non-Cryst. Solids 137 657

    [21]

    Wang S, Wang Q, Zhang X D 2012 Proceedings of the 12th China PV Conference Beijing, September 2-7, 2012 p163

    [22]

    Buehlmann P, Bailat J, Domin D, Billet A, Meillaud F, Feltrin A, Ballif C 2007 Appl. Phys. Lett. 143 505

    [23]

    Zhang S B, Liao X B, An L, Kong G L, Wang Y Q 2002 Acta Phys. Sin. 51 1811 (in Chinese)[张世斌, 廖显伯, 安龙, 孔光临, 王永谦 2002 物理学报 51 1811]

    [24]

    Qiao Z, Xie X J, Hao Q Y, Wen D, Xue J M, Liu C C 2015 Appl. Surf. Sci. 324 152

  • [1] Wu Shi-Man, Tao Si-Min, Ji Ai-Chuang, Guan Shao-Hang, Xiao Jian-Rong. Influence of selenization temperature on structure and optical band gap of MoSe2 thin film. Acta Physica Sinica, 2024, 73(19): 196801. doi: 10.7498/aps.73.20240611
    [2] Guo Shao-Qiang, Hou Qing-Yu, Zhao Chun-Wang, Mao Fei. First principles study of the effect of high V doping on the optical band gap and absorption spectrum of ZnO. Acta Physica Sinica, 2014, 63(10): 107101. doi: 10.7498/aps.63.107101
    [3] Cao Yu, Zhang Jian-Jun, Yan Gan-Gui, Ni Jian, Li Tian-Wei, Huang Zhen-Hua, Zhao Ying. Influences of electrode separation on structural properties of μc-Si1-xGex:H thin films. Acta Physica Sinica, 2014, 63(7): 076801. doi: 10.7498/aps.63.076801
    [4] Ma Hai-Lin, Su Qing. Effect of oxygen pressure on structure and optical band gap of gallium oxide thin films prepared by sputtering. Acta Physica Sinica, 2014, 63(11): 116701. doi: 10.7498/aps.63.116701
    [5] Zong Shuang-Fei, Shen Xiang, Xu Tie-Feng, Chen Yu, Wang Guo-Xiang, Chen Fen, Li Jun, Lin Chang-Gui, Nie Qiu-Hua. Thermal-induced optical changes in the amorphous Ge20Sb15Se65 film. Acta Physica Sinica, 2013, 62(9): 096801. doi: 10.7498/aps.62.096801
    [6] Luo Xiao-Dong, Di Guo-Qing. Ge and Nb co-doped TiO2 films with narrow band gap and low resistivity prepared by sputtering. Acta Physica Sinica, 2012, 61(20): 206803. doi: 10.7498/aps.61.206803
    [7] Nie Qiu-Hua, Wang Guo-Xiang, Wang Xun-Si, Xu Tie-Feng, Dai Shi-Xun, Shen Xiang. Effect of Ga on optical properties of novel Te-based far infrared transmitting chalcogenide glasses. Acta Physica Sinica, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
    [8] Jia Lu, Xie Er-Qing, Pan Xiao-Jun, Zhang Zhen-Xing. Optical properties of amorphous GaN films deposited by sputtering. Acta Physica Sinica, 2009, 58(5): 3377-3382. doi: 10.7498/aps.58.3377
    [9] Lan Wei, Tang Guo-Mei, Cao Wen-Lei, Liu Xue-Qin, Wang Yin-Yue. Structure and optical properties of Ni-doped ZnO films. Acta Physica Sinica, 2009, 58(12): 8501-8505. doi: 10.7498/aps.58.8501
    [10] Jiang Ai-Hua, Xiao Jian-Rong, Wang De-An. Influence of annealing on structure and optical band gap of nitrogen doping fluorinated amorphous carbon films. Acta Physica Sinica, 2008, 57(9): 6013-6017. doi: 10.7498/aps.57.6013
    [11] Pan Xiao-Jun, Zhang Zhen-Xing, Wang Tao, Li Hui, Xie Er-Qing. Room temperature visible photoluminescence from nanocrystalline GaN∶Er film prepared by sputtering. Acta Physica Sinica, 2008, 57(6): 3786-3790. doi: 10.7498/aps.57.3786
    [12] Deng Jin-Xiang, Wang Xu-Yang, Yao Qian, Zhou Tao, Zhang Xiao-Kang. Optical band gap of cubic boron nitride thin films deposited by sputtering. Acta Physica Sinica, 2008, 57(10): 6631-6635. doi: 10.7498/aps.57.6631
    [13] Liang Li-Ping, Zhang Lei, Sheng Yong-Gang, Xu Yao, Wu Dong, Sun Yu-Han, Jiang Xiao-Dong, Wei Xiao-Feng. Studies on the laser-induced damage resistance of sol-gel derived ZrO2-TiO2 composite high refractive index films. Acta Physica Sinica, 2007, 56(6): 3596-3601. doi: 10.7498/aps.56.3596
    [14] Xu Ying, Diao Hong-Wei, Zhang Shi-Bin, Li Xu-Dong, Zeng Xiang-Bo, Wang Wen-Jing, Liao Xian-Bo. Deposition of p-type nc-SiC:H thin films with subtle carbon incorporation for applications in p-i-n solar cells. Acta Physica Sinica, 2007, 56(5): 2915-2919. doi: 10.7498/aps.56.2915
    [15] Xiao Jian-Rong, Xu Hui, Li Yan-Feng, Li Ming-Jun. Effect of nitrogen pressure on structure and optical band gap of copper nitride thin films. Acta Physica Sinica, 2007, 56(7): 4169-4174. doi: 10.7498/aps.56.4169
    [16] Xiao Jian-Rong, Xu Hui, Guo Ai-Min, Wang Huan-You. Study on FN-DLC thin films: (Ⅱ) effect of radio frequency power on the optical band gap of the thin films. Acta Physica Sinica, 2007, 56(3): 1809-1814. doi: 10.7498/aps.56.1809
    [17] Wang Yan, Han Xiao-Yan, Ren Hui-Zhi, Hou Guo-Fu, Guo Qun-Chao, Zhu Feng, Zhang De-Kun, Sun Jian, Xue Jun-Ming, Zhao Ying, Geng Xin-Hua. Stability of mixed phase silicon thin film material under light soaking. Acta Physica Sinica, 2006, 55(2): 947-951. doi: 10.7498/aps.55.947
    [18] . Acta Physica Sinica, 2002, 51(2): 439-443. doi: 10.7498/aps.51.439
    [19] Ye Chao, Ning Zhao-Yuan, Cheng Shan-Hua, Wang Xiang-Ying. . Acta Physica Sinica, 2002, 51(11): 2640-2643. doi: 10.7498/aps.51.2640
    [20] Yang Shen-Dong, Ning Zhao-Yuan, Huang Feng, Cheng Shan-Hua, Ye Chao. . Acta Physica Sinica, 2002, 51(6): 1321-1325. doi: 10.7498/aps.51.1321
Metrics
  • Abstract views:  5427
  • PDF Downloads:  110
  • Cited By: 0
Publishing process
  • Received Date:  02 March 2017
  • Accepted Date:  08 July 2017
  • Published Online:  05 October 2017

/

返回文章
返回