Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Interfacial reaction and failure mechanism of Cu/Ni/SnAg1.8/Cu flip chip Cu pillar bump under thermoelectric stresses

Zhou Bin Huang Yun En Yun-Fei Fu Zhi-Wei Chen Si Yao Ruo-He

Citation:

Interfacial reaction and failure mechanism of Cu/Ni/SnAg1.8/Cu flip chip Cu pillar bump under thermoelectric stresses

Zhou Bin, Huang Yun, En Yun-Fei, Fu Zhi-Wei, Chen Si, Yao Ruo-He
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Micro-interconnection copper pillar bumps are being widely used in the packaging areas of memory chip and high performance computer due to their high density, good conductivity and low noise. Studying the interfacial behavior of copper pillar bump is of great significance for understanding its failure mechanism and microstructure evolution in order to improve the reliability of flip chip package. The thermoelectric stress test, in-situ monitor, infrared thermography test, and microstructure analysis method are employed to study the interfacial reaction, life distribution, failure mechanism and their effect factors of Cu/Ni/SnAg1.8/Cu flip chip copper pillar interconnects under 9 groups of thermoelectric stresses including 2104-3104 A/cm2 and 100-150℃. Under thermoelectric stresses, the interfacial reaction of Cu pillar can be divided into three stages:Cu6Sn5 growth and Sn solder exhaustion; the Cu6Sn5 phase transformation, exhaustion and the Cu3Sn phase growth; voids formation and crack propagation. The rate of Cu6Sn5 phase transforming into Cu3Sn phase is positively correlated with the current density. There are four kinds of failure modes including Cu pad consumption, solder complete consumption and transformation into Cu3Sn, Ni plating layer erosion and strip voids. An obvious polar effect is observed during the dissolution of Cu pads on the substrate side and the Ni layer on the Cu pillar side. When Cu pad is located at the cathode, the direction of electron flow is the same as that of the heat flow, and it can accelerate the consumption of Cu pad and the growth of Cu3Sn. When Ni layer serves as the cathode, the electron flow can enhance the consumption of Ni layer. Under 150℃ and 2.5104 A/cm2, the local Ni barrier layer is eroded after 2.5 h, which results in the transformation of Cu pillar on the Ni side into (Cux, Niy)6Sn5 and Cu3Sn alloy. The life of Cu pillar interconnection complies well to the 2-parameter Weibull distribution with a shape parameter of 7.78, which is a typical characteristic of cumulative wear-out failure. The results show that the intermitallic growth behavior and failure mechanism at Cu pillar interconnects are significantly accelerated and changed under thermoelectric stresses compared with the scenario under the single high temperature stress.
      Corresponding author: Yao Ruo-He, phrhyao@scut.edu.cn
    • Funds: Project supported by the Chinese Advance Research Program of Science and Technology, China (Grant No. JAB1728050), the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2016A030310361, 2015A030310331), the Science and Technology Research Project of Guangdong Province, China (Grant No. 2015B090912002), and the Foundation of Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, China (Grant No. 614280601041705).
    [1]

    Ding M, Wang G, Chao P, Ho P S, Su P, Uehling T 2006 J. Appl. Phys. 99 094906

    [2]

    Kwak B H, Jeong M H, Park Y B 2013 Jpn. J. Appl. Phys. 51 361

    [3]

    Tu K N 2003 J. Appl. Phys. 94 5451

    [4]

    Kim B J, Lim G T, Kim J 2010 J. Electron. Mater. 39 2281

    [5]

    Jeong M H, Kim J W, Kwak B H, Kim B J, Lee K W, Kim J D 2011 Korean J. Met. Mater. 49 180

    [6]

    Kim B J, Lim G T, Kim J D, Lee K W, Park Y B, Lee H Y, Joo Y C 2010 J. Electron. Mater. 39 2281

    [7]

    Chandra Rao B S S, Kripesh V, Zeng K Y 2011 61st Electronic Components and Technology Conference Lake Buena Vista, May 31-3 June, 2011 p100

    [8]

    Ma H C, Guo J D, Chen J Q 2015 J. Mater. Sci.: Mater. Electron. 26 7690

    [9]

    Lai Y S, Chiu Y T, Chen J 2008 J. Electron. Mater. 37 1624

    [10]

    Hsiao H Y, Trigg A D, Chai T C 2015 IEEE Trans. Compon. Packag. Manufact. Technol. 5 314

    [11]

    Li Y 2010 M. S. Dissertation (Chengdou: University of Electronic Science and Technology of China) (in Chinese)[李艳 2010 硕士学位论文(成都: 电子科技大学)]

    [12]

    Frear D R, Burchett S N, Morgan H S 1994 The Mechanics of Solder Alloy Interconnects (New York: van Nostrand Reinold) pp58-61

    [13]

    Chen L D, Huang M L, Zhou S M, Ye S, Ye Y M, Wang J F, Cao X 2011 Proceeding of the International Electronic Packaging Technology High Density Packaging Shanghai, August 8-11, 2011 p316

    [14]

    Kim B J, Lim G T, Kim J, Lee K W 2009 Met. Mater. Int. 15 815

    [15]

    Ho P S, Kwok T 1989 Rep. Prog. Phys. 52 301

    [16]

    Huang M L, Chen L D, Zhou S M, Zhao N 2012 Acta Phys. Sin. 61 198104 (in Chinese)[黄明亮, 陈雷达, 周少明, 赵宁 2012 物理学报 61 198104]

    [17]

    Jeong M H, Kim J W, Kwak B H, Park Y B 2012 Microelectr. Engineer. 89 50

    [18]

    Hsiao Y H, Lin K L, Lee C W, Shao Y H, Lai Y S 2012 J. Electron. Mater. 41 3368

    [19]

    Meinshausen L, Fremont H, Weidezaage K, Plano B 2015 Microelectr. Reliab. 55 192

    [20]

    Gu X, Chan Y C 2009 J. Appl. Phys. 105 093537

    [21]

    Song J Y, Yu J, Lee T Y 2004 Scripta Mater. 51 167

    [22]

    An R, Tian Y H, Zhang R, Wang C Q 2015 J. Mater. Electron. 26 2674

    [23]

    Sequeira C A C, Amaral L 2014 Trans. Nonferr. Metals Soc. China 24 1

  • [1]

    Ding M, Wang G, Chao P, Ho P S, Su P, Uehling T 2006 J. Appl. Phys. 99 094906

    [2]

    Kwak B H, Jeong M H, Park Y B 2013 Jpn. J. Appl. Phys. 51 361

    [3]

    Tu K N 2003 J. Appl. Phys. 94 5451

    [4]

    Kim B J, Lim G T, Kim J 2010 J. Electron. Mater. 39 2281

    [5]

    Jeong M H, Kim J W, Kwak B H, Kim B J, Lee K W, Kim J D 2011 Korean J. Met. Mater. 49 180

    [6]

    Kim B J, Lim G T, Kim J D, Lee K W, Park Y B, Lee H Y, Joo Y C 2010 J. Electron. Mater. 39 2281

    [7]

    Chandra Rao B S S, Kripesh V, Zeng K Y 2011 61st Electronic Components and Technology Conference Lake Buena Vista, May 31-3 June, 2011 p100

    [8]

    Ma H C, Guo J D, Chen J Q 2015 J. Mater. Sci.: Mater. Electron. 26 7690

    [9]

    Lai Y S, Chiu Y T, Chen J 2008 J. Electron. Mater. 37 1624

    [10]

    Hsiao H Y, Trigg A D, Chai T C 2015 IEEE Trans. Compon. Packag. Manufact. Technol. 5 314

    [11]

    Li Y 2010 M. S. Dissertation (Chengdou: University of Electronic Science and Technology of China) (in Chinese)[李艳 2010 硕士学位论文(成都: 电子科技大学)]

    [12]

    Frear D R, Burchett S N, Morgan H S 1994 The Mechanics of Solder Alloy Interconnects (New York: van Nostrand Reinold) pp58-61

    [13]

    Chen L D, Huang M L, Zhou S M, Ye S, Ye Y M, Wang J F, Cao X 2011 Proceeding of the International Electronic Packaging Technology High Density Packaging Shanghai, August 8-11, 2011 p316

    [14]

    Kim B J, Lim G T, Kim J, Lee K W 2009 Met. Mater. Int. 15 815

    [15]

    Ho P S, Kwok T 1989 Rep. Prog. Phys. 52 301

    [16]

    Huang M L, Chen L D, Zhou S M, Zhao N 2012 Acta Phys. Sin. 61 198104 (in Chinese)[黄明亮, 陈雷达, 周少明, 赵宁 2012 物理学报 61 198104]

    [17]

    Jeong M H, Kim J W, Kwak B H, Park Y B 2012 Microelectr. Engineer. 89 50

    [18]

    Hsiao Y H, Lin K L, Lee C W, Shao Y H, Lai Y S 2012 J. Electron. Mater. 41 3368

    [19]

    Meinshausen L, Fremont H, Weidezaage K, Plano B 2015 Microelectr. Reliab. 55 192

    [20]

    Gu X, Chan Y C 2009 J. Appl. Phys. 105 093537

    [21]

    Song J Y, Yu J, Lee T Y 2004 Scripta Mater. 51 167

    [22]

    An R, Tian Y H, Zhang R, Wang C Q 2015 J. Mater. Electron. 26 2674

    [23]

    Sequeira C A C, Amaral L 2014 Trans. Nonferr. Metals Soc. China 24 1

  • [1] Guo Jian-Fei, Li Hao, Wang Zi-Ming, Zhong Ming-Hao, Chang Shuai-Jun, Ou Shu-Ji, Ma Hai-Lun, Liu Li. Failure mechanism of double-trench (DT) 4H-SiC power MOSFET under unclamped inductive switch test. Acta Physica Sinica, 2022, 71(13): 137302. doi: 10.7498/aps.71.20220095
    [2] Wang Yan-Qing, Li Jia-Hao, Peng Yong, Zhao You-Hong, Bai Li-Chun. Current-carrying friction behavior of graphene with intervention of interfacial current. Acta Physica Sinica, 2021, 70(20): 206802. doi: 10.7498/aps.70.20210892
    [3] Guo Jing-Yun, Chen Shao-Ping, Fan Wen-Hao, Wang Ya-Ning, Wu Yu-Cheng. Improving interface properties of Te based thermoelectric materials and composite electrodes. Acta Physica Sinica, 2020, 69(14): 146801. doi: 10.7498/aps.69.20200436
    [4] Wang Ya-Ning, Chen Shao-Ping, Fan Wen-Hao, Guo Jing-Yun, Wu Yu-Cheng, Wang Wen-Xian. Interface performance of PbTe-based thermoelectric joints. Acta Physica Sinica, 2020, 69(24): 246801. doi: 10.7498/aps.69.20201080
    [5] He Yan, Zhou Gang, Liu Yan-Xia, Wang Hao, Xu Dong-Sheng, Yang Rui. Atomistic simulation of microvoid formation and its influence on crack nucleation in hexagonal titanium. Acta Physica Sinica, 2018, 67(5): 050203. doi: 10.7498/aps.67.20171670
    [6] Luo Yang, Wang Ya-Nan. Physical hardware trojan failure analysis and detection method. Acta Physica Sinica, 2016, 65(11): 110602. doi: 10.7498/aps.65.110602
    [7] Jiang Zhao, Chen Xue-Kang. Study on controlling the stress in flexible Al/PI film by interface alloying. Acta Physica Sinica, 2015, 64(21): 216802. doi: 10.7498/aps.64.216802
    [8] Wu Jian-Fang, Zhang Guo-Feng, Chen Rui-Yun, Qin Cheng-Bin, Xiao Lian-Tuan, Jia Suo-Tang. Influence of interfacial electron transfer on fluorescence blinking of quantum dots. Acta Physica Sinica, 2014, 63(16): 167302. doi: 10.7498/aps.63.167302
    [9] Guo Chun-Sheng, Wan Ning, Ma Wei-Dong, Zhang Yan-Feng, Xiong Cong, Feng Shi-Wei. Rapid identification of the consistency of failure mechanism for constant temperature stress accelerated testing. Acta Physica Sinica, 2013, 62(6): 068502. doi: 10.7498/aps.62.068502
    [10] Wang Li-Lin, Wang Xian-Bin, Wang Hong-Yan, Lin Xin, Huang Wei-Dong. Effect of crystallographic orientation on instability behavior of planar interface in directional solidification. Acta Physica Sinica, 2012, 61(14): 148104. doi: 10.7498/aps.61.148104
    [11] Liang Pei, Liu Yang, Wang Le, Wu Ke, Dong Qian-Min, Li Xiao-Yan. Investigation of the doping failure induced by DB in the SiNWs using first principles method. Acta Physica Sinica, 2012, 61(15): 153102. doi: 10.7498/aps.61.153102
    [12] Lin Xiao-Ling, Xiao Qing-Zhong, En Yun-Fei, Yao Ruo-He. Failure mechanism of FC-PBGA devices under external stress. Acta Physica Sinica, 2012, 61(12): 128502. doi: 10.7498/aps.61.128502
    [13] Zhang Fu-Ping, Du Jin-Mei, Liu Yu-Sheng, Liu Yi, Liu Gao-Min, He Hong-Liang. Failure mechanism of PZT 95/5 under direct currentand pulsed electric field. Acta Physica Sinica, 2011, 60(5): 057701. doi: 10.7498/aps.60.057701
    [14] Lu Yu-Dong, He Xiao-Qi, En Yun-Fei, Wang Xin, Zhuang Zhi-Qiang. Directional diffusion of atoms in metal strips/bump interconnects of flip chip. Acta Physica Sinica, 2010, 59(5): 3438-3444. doi: 10.7498/aps.59.3438
    [15] Xue Zheng-Qun, Huang Sheng-Rong, Zhang Bao-Ping, Chen Chao. Analysis of failure mechanism of GaN-based white light-emitting diode. Acta Physica Sinica, 2010, 59(7): 5002-5009. doi: 10.7498/aps.59.5002
    [16] Gong Zhong-Liang, Huang Ping. Study on discontinucous energy dissipation mechanism of friction. Acta Physica Sinica, 2008, 57(4): 2358-2362. doi: 10.7498/aps.57.2358
    [17] Wu Zhen-Yu, Yang Yin-Tang, Chai Chang-Chun, Li Yue-Jin, Wang Jia-You, Liu Bin. The effect of via size on the stress migration of Cu interconnects. Acta Physica Sinica, 2008, 57(6): 3730-3734. doi: 10.7498/aps.57.3730
    [18] Zhang Yong-Kang, Kong De-Jun, Feng Ai-Xin, Lu Jin-Zhong, Zhang Lei-Hong, Ge Tao. Study on the determination of interfacial binding strength of coatings (Ⅰ): theorctical analysis of stress in thin film binding interface. Acta Physica Sinica, 2006, 55(6): 2897-2900. doi: 10.7498/aps.55.2897
    [19] Zhang Yong-Kang, Kong De-Jun, Feng Ai-Xin, Lu Jin-Zhong, Ge Tao. Study on the detection of interfacial bonding strength of coatings (Ⅱ): detecting system of bonding strength. Acta Physica Sinica, 2006, 55(11): 6008-6012. doi: 10.7498/aps.55.6008
    [20] Liu Gui-Li. Electronic theoretical study of stress corrosion mechanism of Ti metal. Acta Physica Sinica, 2006, 55(4): 1983-1986. doi: 10.7498/aps.55.1983
Metrics
  • Abstract views:  9684
  • PDF Downloads:  360
  • Cited By: 0
Publishing process
  • Received Date:  03 September 2017
  • Accepted Date:  14 October 2017
  • Published Online:  20 January 2019

/

返回文章
返回