Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spectroscopic exploration of upconversion luminescence behavior of rare earth-doped single-particle micro/nanocrystals

Zhang Xiang-Yu Ma Ying-Xiang Xu Chun-Long Ding Jian Quan Hong-Juan Hou Zhao-Yang Shi Gang Qin Ning Gao Dang-Li

Citation:

Spectroscopic exploration of upconversion luminescence behavior of rare earth-doped single-particle micro/nanocrystals

Zhang Xiang-Yu, Ma Ying-Xiang, Xu Chun-Long, Ding Jian, Quan Hong-Juan, Hou Zhao-Yang, Shi Gang, Qin Ning, Gao Dang-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In recent years, rare earth-doped upconversion (UC) micro/nanocrystals are useful for many applications, especially in biology because of their unique luminescent properties and specific geometry. The luminescence efficiency of lanthanide-doped UC nanoparticles is of particular importance for their applications. However, the unsatisfactory UC efficiency is still one of the main hurdles. In the present article, a series of Yb3+/Er3+ doped NaYF4 micro/nanoparticles with different ratios of length to diameter are successfully synthesized by a facile hydrothermal route. X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDX) analyses, photoluminescence spectra, and the dynamic process of the luminescence are used to characterize the samples. The intrinsic structural feature of fluoride, the solution pH value, and organic additive Cit3- account for the ultimate shape evolution of the final products. The ratio of length to diameter of NaYF4 microrod can be tuned only by varying the value of pH or the amount of an organic additive (Cit3-). The UC characteristics of a single NaYF4:Yb3+/Er3+ microrod obtained by tuning the value of pH or the amount of Cit3- are investigated by laser confocal microscopy with a 980 nm laser. The two series of codoped fluoride crystals both exhibit the characteristic UC luminescence from Er3+ ions and display the rich luminescence patterns in space. The UC luminescence from a single NaYF4:Yb3+/Er3+ microrod obtained by tuning the value of pH is brighter than that from a single NaYF4:Yb3+/Er3+ microrod with the same size obtained by tuning the amount of Cit3-. The EDX analysis indicates that the number of Na+ defects depends on the specific synthesis conditions of the sample. The Na+ defects of samples obtained by tuning the values of pH are lower than those of samples with the same size obtained by tuning the amount of Cit3-. It conduces to reducing Na+ defects at lower pH value. The parameters of the luminescence kinetics are found to be unambiguously dependent on the size of sample, which relates to higher energy phonon of surface and Na+ defects. The mechanism of luminescence enhancement by pH controlling is explored, and a mechanism based on the reduced intrinsic defects of Na+ is proposed. The investigation not only enriches the controllable synthesis approach of fluoride micro/nanomaterials, but also indicates the potential applications of rare earth materials with a rich luminescence pattern in the photonic devices and anti-counterfeiting devices.
      Corresponding author: Zhang Xiang-Yu, xyzhang@chd.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604253, 51771033), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 310812171004, 301812172001), the Natural Science Foundation of Shaanxi Province of China (Grant No. 2018JM1036), the Plan Project of Youth Science and Technology New Star of Shaanxi Province, China (Grant No. 2015KJXX-33), the China Postdoctoral Science Foundation (Grant No. 2015M570816), the Provincial Undergraduate Training Program for Innovation and Entrepreneurship, China (Grant No. 1229), and the Undergraduate Scientific Research Training Plan (SSRT) of Xi'an University of Architecture and Technology, China.
    [1]

    Luo Z, Ruan Q, Zhong M, Cheng Y, Yang R, Xu B, Xu H, Cai Z 2016 Opt. Lett. 41 2258

    [2]

    Zhou B, Shi B, Jin D, Liu X 2015 Nat. Nanotechnol. 10 924

    [3]

    Yao C, Wang P, Li X, Hu X, Hou J, Wang L, Zhang F 2016 Adv. Mater. 28 9341

    [4]

    Sun L, Wang Y, Yan C 2014 Acc. Chem. Res. 47 1001

    [5]

    Zhou J, Liu Q, Feng W, Sun Y, Li F 2015 Chem. Rev. 115 395

    [6]

    Bhaumik J, Mittal A K, Banerjee A, Chisti Y, Banerjee U C 2015 Nano Res. 8 1373

    [7]

    Fu J, Fu X, Wang C, Yang X, Zhuang J, Zhang G, Lai B, Wu M, Wang J 2013 Eur. J. Inorg. Chem. 2013 1269

    [8]

    Gao D, Zhang X, Gao W 2012 J. Appl. Phys. 111 033505

    [9]

    Ding M, Chen D, Yin S, Ji Z, Zhong J, Ni Y, Lu C, Xu Z 2015 Sci. Rep. 5 12745

    [10]

    Gao D, Zhang X, Zhang J 2014 CrystEngComm 16 11115

    [11]

    Li S, Ye S, Chen X, Liu T, Guo Z, Wang D 2017 J. Rare Earth 35 753

    [12]

    Gao D, Zhang X, Chong B, Xiao G, Tian D 2017 Phys. Chem. Chem. Phys. 19 4288

    [13]

    Bai X, Song H, Pan G, Lei Y, Wang T, Ren X, Lu S, Dong B, Dai Q, Fan L 2007 J. Phys. Chem. C 111 13611

    [14]

    Schietinger S, de Menezes L S, Lauritzen B, Benson O 2009 Nano Lett. 9 2477

    [15]

    Wang Z, Zeng S, Yu J, Ji X, Zeng H, Xin S, Wang Y, Sun L 2015 Nanoscale 7 9552

    [16]

    Suo H, Zhao X, Zhang Z, Li T, Goldys E M, Guo C 2017 Chem. Eng. J. 313 65

    [17]

    Kramer K W, Biner D, Frei G, Gudel H U, Hehlen M P, Luthi S R 2004 Chem. Mater. 16 1244

    [18]

    Lu E, Pichaandi J, Arnett L P, Tong L, Winnik M A 2017 J. Phys. Chem. C 121 18178

    [19]

    Zhang X Y, Wang J G, Xu C L, Pan Y, Hou Z Y, Ding J, Gao D L 2016 Acta Phys. Sin. 65 204205 (in Chinese) [张翔宇, 王晋国, 徐春龙, 潘渊, 侯兆阳, 丁健, 高当丽 2016 物理学报 65 204205]

    [20]

    Zhou J, Qiu J 2016 J. Inorg. Mater. 31 1023 (in Chinese) [周佳佳, 邱建荣 2016 无机材料学报 31 1023]

    [21]

    Gao D, Tian D, Zhang X, Gao W 2016 Sci. Rep. 6 22433

    [22]

    Chen B, Sun T Y, Qiao X S, Fan X P, Wang F 2015 Adv. Opt. Mater. 3 1577

    [23]

    Ostrowski A D, Chan E M, Gargas D J, Katz E M, Han G, Schuck P J, Milliron D J, Cohen B E 2012 ACS Nano 6 2686

    [24]

    Mor F M, Sienkiewicz A, Forr L, Jeney S 2014 ACS Photon. 1 1251

    [25]

    Ma C, Xu X, Wang F, Zhou Z, Liu D, Zhao J, Guan M, Lang C I, Jin D 2017 Nano Lett. 17 2858

    [26]

    Gao D, Zhang X, Gao W 2013 ACS Appl. Mater. Interfaces 5 9732

    [27]

    Gao D, Gao W, Shi P, Li L 2013 RSC Adv. 3 14757

    [28]

    Liang X, Wang X, Zhuang J, Peng Q, Li Y 2007 Adv. Funct. Mater. 17 2757

    [29]

    Zhang X, Wang M, Ding J, Gao D, Shi Y, Song X 2012 CrystEngComm 14 8357

    [30]

    Zheng W, Huang P, Tu D, Ma E, Zhu H, Chen X 2015 Chem. Soc. Rev. 44 1379

    [31]

    Gao D L, Tian D P, Chong B, Li L, Zhang X Y 2016 J. Alloys Compd. 678 212

    [32]

    Tian D, Gao D, Chong B, Liu X 2015 Dalton Trans. 44 4133

    [33]

    Zhang X Y, Wang D, Shi H W, Wang J G, Hou Z Y, Zhang L D, Gao D L 2018 Acta Phys. Sin. 67 084203 (in Chinese) [张翔宇, 王丹, 石焕文, 王晋国, 侯兆阳, 张力东, 高当丽 2018 物理学报 67 084203]

    [34]

    Tu L, Liu X, Wu F, Zhang H 2015 Chem. Soc. Rev. 44 1331

    [35]

    Fischer S, Bronstein N D, Swabeck J K, Chan E M, Alivisatos A P 2016 Nano Lett. 16 7241

    [36]

    Sun T, Ma R, Qiao X, Fan X, Wang F 2016 ChemPhysChem 17 766

  • [1]

    Luo Z, Ruan Q, Zhong M, Cheng Y, Yang R, Xu B, Xu H, Cai Z 2016 Opt. Lett. 41 2258

    [2]

    Zhou B, Shi B, Jin D, Liu X 2015 Nat. Nanotechnol. 10 924

    [3]

    Yao C, Wang P, Li X, Hu X, Hou J, Wang L, Zhang F 2016 Adv. Mater. 28 9341

    [4]

    Sun L, Wang Y, Yan C 2014 Acc. Chem. Res. 47 1001

    [5]

    Zhou J, Liu Q, Feng W, Sun Y, Li F 2015 Chem. Rev. 115 395

    [6]

    Bhaumik J, Mittal A K, Banerjee A, Chisti Y, Banerjee U C 2015 Nano Res. 8 1373

    [7]

    Fu J, Fu X, Wang C, Yang X, Zhuang J, Zhang G, Lai B, Wu M, Wang J 2013 Eur. J. Inorg. Chem. 2013 1269

    [8]

    Gao D, Zhang X, Gao W 2012 J. Appl. Phys. 111 033505

    [9]

    Ding M, Chen D, Yin S, Ji Z, Zhong J, Ni Y, Lu C, Xu Z 2015 Sci. Rep. 5 12745

    [10]

    Gao D, Zhang X, Zhang J 2014 CrystEngComm 16 11115

    [11]

    Li S, Ye S, Chen X, Liu T, Guo Z, Wang D 2017 J. Rare Earth 35 753

    [12]

    Gao D, Zhang X, Chong B, Xiao G, Tian D 2017 Phys. Chem. Chem. Phys. 19 4288

    [13]

    Bai X, Song H, Pan G, Lei Y, Wang T, Ren X, Lu S, Dong B, Dai Q, Fan L 2007 J. Phys. Chem. C 111 13611

    [14]

    Schietinger S, de Menezes L S, Lauritzen B, Benson O 2009 Nano Lett. 9 2477

    [15]

    Wang Z, Zeng S, Yu J, Ji X, Zeng H, Xin S, Wang Y, Sun L 2015 Nanoscale 7 9552

    [16]

    Suo H, Zhao X, Zhang Z, Li T, Goldys E M, Guo C 2017 Chem. Eng. J. 313 65

    [17]

    Kramer K W, Biner D, Frei G, Gudel H U, Hehlen M P, Luthi S R 2004 Chem. Mater. 16 1244

    [18]

    Lu E, Pichaandi J, Arnett L P, Tong L, Winnik M A 2017 J. Phys. Chem. C 121 18178

    [19]

    Zhang X Y, Wang J G, Xu C L, Pan Y, Hou Z Y, Ding J, Gao D L 2016 Acta Phys. Sin. 65 204205 (in Chinese) [张翔宇, 王晋国, 徐春龙, 潘渊, 侯兆阳, 丁健, 高当丽 2016 物理学报 65 204205]

    [20]

    Zhou J, Qiu J 2016 J. Inorg. Mater. 31 1023 (in Chinese) [周佳佳, 邱建荣 2016 无机材料学报 31 1023]

    [21]

    Gao D, Tian D, Zhang X, Gao W 2016 Sci. Rep. 6 22433

    [22]

    Chen B, Sun T Y, Qiao X S, Fan X P, Wang F 2015 Adv. Opt. Mater. 3 1577

    [23]

    Ostrowski A D, Chan E M, Gargas D J, Katz E M, Han G, Schuck P J, Milliron D J, Cohen B E 2012 ACS Nano 6 2686

    [24]

    Mor F M, Sienkiewicz A, Forr L, Jeney S 2014 ACS Photon. 1 1251

    [25]

    Ma C, Xu X, Wang F, Zhou Z, Liu D, Zhao J, Guan M, Lang C I, Jin D 2017 Nano Lett. 17 2858

    [26]

    Gao D, Zhang X, Gao W 2013 ACS Appl. Mater. Interfaces 5 9732

    [27]

    Gao D, Gao W, Shi P, Li L 2013 RSC Adv. 3 14757

    [28]

    Liang X, Wang X, Zhuang J, Peng Q, Li Y 2007 Adv. Funct. Mater. 17 2757

    [29]

    Zhang X, Wang M, Ding J, Gao D, Shi Y, Song X 2012 CrystEngComm 14 8357

    [30]

    Zheng W, Huang P, Tu D, Ma E, Zhu H, Chen X 2015 Chem. Soc. Rev. 44 1379

    [31]

    Gao D L, Tian D P, Chong B, Li L, Zhang X Y 2016 J. Alloys Compd. 678 212

    [32]

    Tian D, Gao D, Chong B, Liu X 2015 Dalton Trans. 44 4133

    [33]

    Zhang X Y, Wang D, Shi H W, Wang J G, Hou Z Y, Zhang L D, Gao D L 2018 Acta Phys. Sin. 67 084203 (in Chinese) [张翔宇, 王丹, 石焕文, 王晋国, 侯兆阳, 张力东, 高当丽 2018 物理学报 67 084203]

    [34]

    Tu L, Liu X, Wu F, Zhang H 2015 Chem. Soc. Rev. 44 1331

    [35]

    Fischer S, Bronstein N D, Swabeck J K, Chan E M, Alivisatos A P 2016 Nano Lett. 16 7241

    [36]

    Sun T, Ma R, Qiao X, Fan X, Wang F 2016 ChemPhysChem 17 766

  • [1] Gu Jing-Xuan, Zheng Ting, Guo Ming-Shuai, Xia Dong-Sheng, Zhang Hui-Chen. Fluid dynamics simulation on water lubricating performance of micro-/nano-textured surfaces considering roughness structures. Acta Physica Sinica, 2024, 73(11): 114601. doi: 10.7498/aps.73.20240333
    [2] Yang Zhi-Gang, Liu Ying-Chao, Zhang Shi-Qing, Luo Rui-Jian, Zhao Xu-Qian, Lian Jia-Rong, Qu Jun-Le. Fluorescence lifetime imaging of dynamics of mitochondrial and nucleolar microenvironment during stimuli response in living cells. Acta Physica Sinica, 2024, 73(7): 078702. doi: 10.7498/aps.73.20231990
    [3] Yu Xue-Zhou, Huang Chang-Bao, Wu Hai-Xin, Hu Qian-Qian, Liu Guo-Jin, Li Ya, Zhu Zhi-Cheng, Qi Hua-Bei, Ni You-Bao, Wang Zhen-You. Theoretical study of Dy3+, Na+: PbGa2S4 mid-infrared laser based on experimental parameters. Acta Physica Sinica, 2024, 73(16): 164203. doi: 10.7498/aps.73.20240223
    [4] Liu Zhe, Wei Hao, Cui Hai-Hang, Sun Kai, Sun Bo-Hua. Analysis of GAAFET’s transient heat transport process based on phonon hydrodynamic equations. Acta Physica Sinica, 2024, 73(14): 144401. doi: 10.7498/aps.73.20240491
    [5] Gao Wei, Sun Ze-Yu, Guo Li-Chun, Han Shan-Shan, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Wang Yong-Kai, Liu Ji-Hong, Dong Jun. Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure. Acta Physica Sinica, 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [6] Wang Shao-Qi, Deng Ying, Zhang Yong-Liang, Li Chao, Wang Fang, Kang Min-Qiang, Luo Yun, Xue Hai-Tao, Hu Dong-Xia, Su Jing-Qin, Zheng Kui-Xing, Zhu Qi-Hua. Theoretical study on generating mid-infrared ultrashort pulse in mode-locked Er3+: ZBLAN fiber laser. Acta Physica Sinica, 2016, 65(4): 044206. doi: 10.7498/aps.65.044206
    [7] Guo Yu-Qi, Pan Jun-Xing, Zhang Jin-Jun, Sun Min-Na, Wang Bao-Feng, Wu Hai-Shun. Multi-scale ordered patterns in photosensitive ternary polymer mixtures. Acta Physica Sinica, 2016, 65(5): 056401. doi: 10.7498/aps.65.056401
    [8] Lu Nai-Yan, Yu Xue-Jian, Wan Jia-Wei, Weng Yu-Yan, Guo Jun-Hong, Liu Yu. Surface plasmon resonance coupling effect of micro-patterned gold film. Acta Physica Sinica, 2016, 65(20): 208102. doi: 10.7498/aps.65.208102
    [9] Jia Ming-Zhen, Wang Hong-Yan, Chen Yuan-Zheng, Ma Cun-Liang. Effect of Na substitution on the electronic structure and ion diffusion in Li2MnSiO4. Acta Physica Sinica, 2016, 65(5): 057101. doi: 10.7498/aps.65.057101
    [10] Sun Yu, Yang Chun-Hui, Jiang Zhao-Hua, Meng Xiang-Bin. Room temperature absorption spectra analysis of Er3+/Yb3+-doped Hydrothermal Epitaxial Layer on LiNbO3 and LiTaO3 Single Crystal Substrates. Acta Physica Sinica, 2012, 61(12): 127801. doi: 10.7498/aps.61.127801
    [11] Song Zhi-Ming, Zhao Dong-Xu, Guo Zhen, Li Bin-Hui, Zhang Zhen-Zhong, Shen De-Zhen. Fabrication and fast photoresponse properties of ZnO nanowires photodetectors. Acta Physica Sinica, 2012, 61(5): 052901. doi: 10.7498/aps.61.052901
    [12] Liu Ming-Yang, Sun Wei-Jin. Up-conversion sensitization luminescence in Pr3+and Yb3+ co-doped fluoride glasses. Acta Physica Sinica, 2011, 60(7): 077804. doi: 10.7498/aps.60.077804
    [13] Xue Chun-Rong, Yi Kui, Qi Hong-Ji, Shao Jian-Da, Fan Zheng-Xiu. Optical constants of fluoride films in the DUV range. Acta Physica Sinica, 2009, 58(7): 5035-5040. doi: 10.7498/aps.58.5035
    [14] Chai Lu, Yan Shi, Xue Ying-Hong, Liu Qing-Wen, Wang Qing-Yue, Su Liang-Bi, Xu Xiao-Dong, Zhao Guang-Jun, Xu Jun. Luminescence properties of Yb3+/Na+ codoped CaF2 crystal and laser operation with low threshold. Acta Physica Sinica, 2007, 56(6): 3553-3558. doi: 10.7498/aps.56.3553
    [15] ZHANG LONG, ZHANG JUN-JIE, QI CHANG-HONG, LIN FENG-YING, HU HE-FANG. RARE EARTH DOPED AlF3-BASED FLOURIDE GLASS. Acta Physica Sinica, 2000, 49(8): 1620-1626. doi: 10.7498/aps.49.1620
    [16] JIN QING-HUA, FENG SHAO-SIN, GUO ZHEN-YA, LI BAO-HUI, DING DA-TONG. CALCULATIONS OF THE FORMATION ENERGIES OF POINT DEFECTS IN ALKALINE EARTH FLUORIDES. Acta Physica Sinica, 1999, 48(7): 1261-1268. doi: 10.7498/aps.48.1261
    [17] FENG SHAO-XIN, JIN QING-HUA, GUO ZHEN-YA, LI BAO-HUI, DING DA-TONG. EMPIRICAL PARAMETERIZATION OF INTER-IONIC POTENTIALS FOR ALKALINE EARTH FLUORIDES. Acta Physica Sinica, 1998, 47(11): 1811-1817. doi: 10.7498/aps.47.1811
    [18] CHANG MING, SUN WEI, XING JIN-HUA, WANG YU-MING. THE SIMULATION OF ATOMIC STRUCTURES AND THE-INTERFERENCE FUNCTION OF NANOCRYSTALS. Acta Physica Sinica, 1997, 46(7): 1319-1325. doi: 10.7498/aps.46.1319
    [19] WANG YIN-YUE, ZHANG FANG-QING, CHEN GUANG-HUA. A STUDY ON THE METASTABLE THERMAL DEFECTS IN REACTIVELY SPUTTERED a-SiGe:H FILMS. Acta Physica Sinica, 1990, 39(10): 1661-1664. doi: 10.7498/aps.39.1661
    [20] XING XIU-SAN. THE PRODUCTION KINETICS OF THERMAL DEFECTS IN CRYSTALS. Acta Physica Sinica, 1988, 37(4): 694-697. doi: 10.7498/aps.37.694
Metrics
  • Abstract views:  6214
  • PDF Downloads:  133
  • Cited By: 0
Publishing process
  • Received Date:  10 October 2017
  • Accepted Date:  28 December 2017
  • Published Online:  20 September 2019

/

返回文章
返回