Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dependence of peak width of energy distribution on profile of combined field

Lin Nan-Sheng Han Lu-Xue Jiang Miao Li Ying-Jun

Citation:

Dependence of peak width of energy distribution on profile of combined field

Lin Nan-Sheng, Han Lu-Xue, Jiang Miao, Li Ying-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we use the quantum field theory to solve the generation process of particle-anti-particle pairs (PAPs), and study the generation characteristics of PAPs by changing the profile of the field combining an oscillating field and a static electric field. We find a way to increase the generation of PAPs and change the energy distribution. As the field strength of the oscillating field increases, the quantity of particle pairs generated increases. Increasing the field strength of a static electric field yields higher energy pairs of particles. If the frequency of the oscillating field becomes higher, the peak of the energy distribution shifts to higher energy but the width of the peak remains unchanged. The reduction of the field width of the oscillating field increases the generated quantity of PAPs on the one hand, and reduces the peak width of the energy distribution on the other hand. Therefore, we can obtain a narrower range of the energy distribution and more PAPs at less energy cost. Meanwhile, the relationship among the generation yield, the width of energy distribution and the width of the oscillation field is obtained. The width of the oscillating field only significantly narrows the peak width of the energy distribution in a range and reaches a limit after that. This provides useful details for future experiments, and suggests an appropriate width of the oscillating field to produce enough quantity of PAPs with concentrated energy distribution. According to previous studies, varying field width will inevitably lead to the change in the intensity of the electric field. It will be shown that the concentrating of the energy distribution is induced by narrowing the oscillating field instead of increasing the electric field intensity. Therefore, more concentrated PAPs will be obtained and their mutual annihilation will lead to the generation of -ray, which can be used as a -ray in experiments that follow. We suggest reducing the width of the oscillating field to improve the energy concentration of both particles and anti-particles while their quantities are still large enough.
      Corresponding author: Li Ying-Jun, lyj@aphy.iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11605286, 11405266, 11374360) and the National Basic Research Program of China (Grant No. 2013CBA01504).
    [1]

    Schwinger J 1951 Phys. Rev. 82 664

    [2]

    Chao C Y 1930 Phys. Rev. 36 1519

    [3]

    Cowan T, Backe H, Bethge K, Bokemeyer H, Folger H, Greenberg J S, Sakaguchi K, Schwalm D, Schweppe J, Stiebing K E, Vincent P 1986 Phys. Rev. Lett. 56 444

    [4]

    Ahmad I, Austin S M, Back B B, Betts R R, Calaprice F P, Chan K C, Chishti A, Conner C, Dunford R W, Fox J D, Freedman S J, Freer M, Gazes S B, Hallin A L, Happ T, Henderson D, Kaloskamis N I, Kashy E, Kutschera W, Last J, Lister C J, Liu M, Maier M R, Mercer D J, Mikolas D, Perera P A A, Rhein M D, Roa D E, Schiffer J P, Trainor T A, Wilt P, Winfield J S, Wolanski M R, Wolfs F L H, Wuosmaa A H, Xu G, Young A, Yurkon J E (A P E X Collaboration) 1997 Phys. Rev. Lett. 78 618

    [5]

    Burke D L, Field R C, Horton-Smith G, Spencer J E, Walz D, Berridge S C, Bugg W M, Shmakov K, Weidemann A W, Bula C, McDonald K T, Prebys E J, Bamber C, Boege S J, Koffas T, Kotseroglou T, Melissinos A C, Meyerhofer D D, Reis D A, Ragg W 1997 Phys. Rev. Lett. 79 1626

    [6]

    Tajima T, Mourou G 2002 Phys. Rev. Spec. Top. 5 031301

    [7]

    Hubbell J H 2006 Radiat. Phys. Chem. 75 614

    [8]

    Dong S S, Chen M, Su Q, Grobe R 2017 Phys. Rev. A 96 032120

    [9]

    Schtzhold R, Gies H, Dunne G 2008 Phys. Rev. Lett. 101 130404

    [10]

    Su Q, Grobe R 2008 Laser Phys. 17 92

    [11]

    Muller B, Greiner W, Rafelski J 1985 Quantum Electrodynamics of Strong Fields (Berlin: Springer) p26

    [12]

    Shen H, Bandrauk A D 1994 J. Phys. A 27 7147

    [13]

    Braun J W, Su Q, Grobe R 1999 Phys. Rev. A 59 604

    [14]

    Mocken G R, Keitel C H 2008 Comput. Phys. Commun. 178 868

    [15]

    Ruf M, Bauke H, Keitel C H 2009 J. Comput. Phys. 228 9092

    [16]

    Cheng T, Su Q, Grobe R 2010 Contemp. Phys. 51 315

    [17]

    Holstein B R 1998 Am. J. Phys. 66 507

    [18]

    Sauter F 1931 Z. Phys. 69 742

    [19]

    Hansen A, Ravndal F 1981 Phys. Scr. 23 1036

    [20]

    Holstein B R 1999 Am. J. Phys. 67 499

    [21]

    Cheng T, Su Q, Grobe R 2010 Contemp. Phys. 51 315

    [22]

    Krekora P, Su Q, Grobe R 2004 Phys. Rev. Lett. 93 043004

    [23]

    Newton T D, Wigner E P 1949 Rev. Mod. Phys. 21 400

    [24]

    Jiang M, Su W, L Z Q, Lu X, Li Y J, Grobe R, Su Q 2012 Phys. Rev. A 85 033408

    [25]

    Jiang M, L Q Z, Sheng Z M, Grobe R, Su Q 2013 Phys. Rev. A 87 042503

  • [1]

    Schwinger J 1951 Phys. Rev. 82 664

    [2]

    Chao C Y 1930 Phys. Rev. 36 1519

    [3]

    Cowan T, Backe H, Bethge K, Bokemeyer H, Folger H, Greenberg J S, Sakaguchi K, Schwalm D, Schweppe J, Stiebing K E, Vincent P 1986 Phys. Rev. Lett. 56 444

    [4]

    Ahmad I, Austin S M, Back B B, Betts R R, Calaprice F P, Chan K C, Chishti A, Conner C, Dunford R W, Fox J D, Freedman S J, Freer M, Gazes S B, Hallin A L, Happ T, Henderson D, Kaloskamis N I, Kashy E, Kutschera W, Last J, Lister C J, Liu M, Maier M R, Mercer D J, Mikolas D, Perera P A A, Rhein M D, Roa D E, Schiffer J P, Trainor T A, Wilt P, Winfield J S, Wolanski M R, Wolfs F L H, Wuosmaa A H, Xu G, Young A, Yurkon J E (A P E X Collaboration) 1997 Phys. Rev. Lett. 78 618

    [5]

    Burke D L, Field R C, Horton-Smith G, Spencer J E, Walz D, Berridge S C, Bugg W M, Shmakov K, Weidemann A W, Bula C, McDonald K T, Prebys E J, Bamber C, Boege S J, Koffas T, Kotseroglou T, Melissinos A C, Meyerhofer D D, Reis D A, Ragg W 1997 Phys. Rev. Lett. 79 1626

    [6]

    Tajima T, Mourou G 2002 Phys. Rev. Spec. Top. 5 031301

    [7]

    Hubbell J H 2006 Radiat. Phys. Chem. 75 614

    [8]

    Dong S S, Chen M, Su Q, Grobe R 2017 Phys. Rev. A 96 032120

    [9]

    Schtzhold R, Gies H, Dunne G 2008 Phys. Rev. Lett. 101 130404

    [10]

    Su Q, Grobe R 2008 Laser Phys. 17 92

    [11]

    Muller B, Greiner W, Rafelski J 1985 Quantum Electrodynamics of Strong Fields (Berlin: Springer) p26

    [12]

    Shen H, Bandrauk A D 1994 J. Phys. A 27 7147

    [13]

    Braun J W, Su Q, Grobe R 1999 Phys. Rev. A 59 604

    [14]

    Mocken G R, Keitel C H 2008 Comput. Phys. Commun. 178 868

    [15]

    Ruf M, Bauke H, Keitel C H 2009 J. Comput. Phys. 228 9092

    [16]

    Cheng T, Su Q, Grobe R 2010 Contemp. Phys. 51 315

    [17]

    Holstein B R 1998 Am. J. Phys. 66 507

    [18]

    Sauter F 1931 Z. Phys. 69 742

    [19]

    Hansen A, Ravndal F 1981 Phys. Scr. 23 1036

    [20]

    Holstein B R 1999 Am. J. Phys. 67 499

    [21]

    Cheng T, Su Q, Grobe R 2010 Contemp. Phys. 51 315

    [22]

    Krekora P, Su Q, Grobe R 2004 Phys. Rev. Lett. 93 043004

    [23]

    Newton T D, Wigner E P 1949 Rev. Mod. Phys. 21 400

    [24]

    Jiang M, Su W, L Z Q, Lu X, Li Y J, Grobe R, Su Q 2012 Phys. Rev. A 85 033408

    [25]

    Jiang M, L Q Z, Sheng Z M, Grobe R, Su Q 2013 Phys. Rev. A 87 042503

  • [1] Guo Fu-Cheng, Li Cui, Li Yan-Zhong. Analysis of influence of spatial distribution error of directional infrared light on temperature field of cryogenic targets. Acta Physica Sinica, 2022, 71(11): 110702. doi: 10.7498/aps.71.20212351
    [2] Shi Tai-Xia, Dong Li-Juan, Chen Yong-Qiang, Liu Yan-Hong, Liu Li-Xiang, Shi Yun-Long. Regulation of spatial fields in wireless power transfer with artificial magnetic conductor. Acta Physica Sinica, 2019, 68(21): 214203. doi: 10.7498/aps.68.20190862
    [3] Wang Dan, He Yong-Ning, Ye Ming, Cui Wan-Zhao. Secondary electron emission characteristics of gold nanostructures. Acta Physica Sinica, 2018, 67(8): 087902. doi: 10.7498/aps.67.20180079
    [4] Tan Yi, Li Xin-Yang. Influence of filling factor on far-field intensity distribution in coherent beam combination. Acta Physica Sinica, 2014, 63(9): 094202. doi: 10.7498/aps.63.094202
    [5] Li Shu, Deng Li, Tian Dong-Feng, Li Gang. A new sampling method based on radiation energy density for location of radiative source particles. Acta Physica Sinica, 2014, 63(23): 239501. doi: 10.7498/aps.63.239501
    [6] Zhang Chun-Lai, Liu Chun-Ming, Xiang Xia, Wang Zhi-Guo, Li Li, Yuan Xiao-Dong, He Shao-Bo, Zu Xiao-Tao. The effects of shape and position on field distribution of discontinuous crack. Acta Physica Sinica, 2012, 61(16): 164207. doi: 10.7498/aps.61.164207
    [7] Niu Jun, Zhang Yi-Jun, Chang Ben-Kang, Xiong Ya-Juan. Evaluation of surface potential barriers after activation of GaAs photocathode. Acta Physica Sinica, 2011, 60(4): 044210. doi: 10.7498/aps.60.044210
    [8] Hong Wei-Yi, Yang Zhen-Yu, Lan Peng-Fei, Zhang Qing-Bin, Li Qian-Guang, Lu Pei-Xiang. Generating isolated broadband attosecond pulses with stable pulse duration in a non-colinear polarized two-color field. Acta Physica Sinica, 2009, 58(7): 4914-4919. doi: 10.7498/aps.58.4914
    [9] Zou Xiu, Zou Bin-Yan, Liu Hui-Ping. Effect of external magnetic field on ion energy density of collisional radio-frequency sheath. Acta Physica Sinica, 2009, 58(9): 6392-6396. doi: 10.7498/aps.58.6392
    [10] Zhang Na-Zhen, Cang Huai-Wen, Wang Wei-Guo, Miao Shu-Yi, Jin Feng, Wu Qing-Hao, Hua Lei, Li Hai-Yang. Multiple ionization of diethyl ether cluster by nanosecond laser: generation of multiply charged ions and the electron energy distribution. Acta Physica Sinica, 2009, 58(7): 4556-4562. doi: 10.7498/aps.58.4556
    [11] Wang Wei, Zhang Jie, Zhao Gang. Effect of a Planckian radiation field on population of bound-electrons. Acta Physica Sinica, 2008, 57(3): 1759-1764. doi: 10.7498/aps.57.1759
    [12] Wang Ying, Liu Xu, Zhang Yue-Guang, Gu Pei-Fu, Li Yi-Yu, Li Ming-Yu. Numerical analysis of thermal response of mid-infrared high reflectance coating under different laser irradiation angles. Acta Physica Sinica, 2007, 56(4): 2382-2387. doi: 10.7498/aps.56.2382
    [13] Zou Qi-Hui, Lü Bai-Da. The far-field properties of ultrashort pulsed beams with constant waist width in free space. Acta Physica Sinica, 2005, 54(12): 5642-5647. doi: 10.7498/aps.54.5642
    [14] Qi Hong- Ji, Yi Kui, He Hong- Bo, Shao Jian- Da. The effect of sputtering particle energy on surface characteristics of Mo thin films. Acta Physica Sinica, 2004, 53(12): 4398-4404. doi: 10.7498/aps.53.4398
    [15] Wang Qi, Chen Jian-Xin, Xia Yuan-Qin, Chen De-Ying. . Acta Physica Sinica, 2002, 51(5): 1035-1039. doi: 10.7498/aps.51.1035
    [16] CHEN MIN, WEI HE-LIN, LIU ZU-LI, YAO KAI-LUN. EFFECT OF LOW-ENERGY DEPOSITION PARTICLES ON INITIAL STAGE OF THIN FILM. Acta Physica Sinica, 2001, 50(12): 2446-2451. doi: 10.7498/aps.50.2446
    [17] LIU HONG-XIANG, WEI HE-LIN, LIU ZU-LI, LIU YAN-HONG, WANG JUN-ZHEN. EFFECT OF THE MAGNETIC MIRROR FIELD ON THE ION ENERGY DISTRIBUTIONS IN A RADIO F REQUENCY PLASMA. Acta Physica Sinica, 2000, 49(9): 1764-1768. doi: 10.7498/aps.49.1764
    [18] CHEN RU-HONG, MA BEN-KUN. HIERARCHICAL NETWORK WITH A WIDE DISTRIBUTION OF CONDUCTANCE. Acta Physica Sinica, 1996, 45(7): 1197-1204. doi: 10.7498/aps.45.1197
    [19] LIU YOU-CHANG. THE ENERGY OF DOUBLE-STAR SYSTEM AND ITS DISTRIBUTION. Acta Physica Sinica, 1979, 28(2): 152-159. doi: 10.7498/aps.28.152
    [20] WU CHUAN-TEH. INITIAL ENERGY DISTRIBUTION AND ANGULAR DISTRIBUTION OF PHOTOELECTRONS. Acta Physica Sinica, 1958, 14(2): 139-152. doi: 10.7498/aps.14.139
Metrics
  • Abstract views:  6007
  • PDF Downloads:  91
  • Cited By: 0
Publishing process
  • Received Date:  14 December 2017
  • Accepted Date:  19 April 2018
  • Published Online:  05 July 2018

/

返回文章
返回