Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multipactor in parallel-plate transmission line partially filled with dielectric material

Zhai Yong-Gui Wang Rui Wang Hong-Guang Lin Shu Chen Kun Li Yong-Dong

Citation:

Multipactor in parallel-plate transmission line partially filled with dielectric material

Zhai Yong-Gui, Wang Rui, Wang Hong-Guang, Lin Shu, Chen Kun, Li Yong-Dong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Due to the poor conductivity of the dielectrics, if an electron collides with the dielectric material, a charge will be deposited on the surface as a consequence of the secondary electron emission. Thus, the multipactor process in dielectric-loaded microwave devices differs from those in metallic devices. The objective of this paper is to study the self-extinguishing physical mechanism of the multipactor in parallel-plate transmission lines partially filled with dielectric layers by particle-in-cell simulation. The self-consistent field generated by the electrons in the simulation is assumed to be neglected, since there do not exist too many electrons in the self-extinguishing process. To illustrate the self-extinguishing phenomenon in a dielectric-loaded waveguide device, the strength of electric field in the vacuum area needs to be the same as that in a metallic device. When the input power is slightly higher than the multipactor threshold, the self-extinguishing phenomenon occurs after the initial electron multiplication while the number of electrons increases exponentially with the simulation duration in metallic device. Based on this fact, the physical mechanism of self-extinguishing phenomenon is investigated in detail. By analyzing the temporal evolution of the electrons and the average secondary electron yield (SEY), it can be concluded that the self-extinguishing phenomenon is caused by the electrostatic field generated by the charges deposited on the surface of the dielectric. Moreover, the average SEY of the dielectric tends to be one or greater than one when the number of electrons drops to nearly zero. Hence, it is necessary to further analyze the ability to continue accumulating charges on the dielectric surface when extra electrons are injected into the simulation region at the instant when the number of electrons is close to zero. For the former case, the charges deposited on the dielectric surface remain steady all along, while the charges reach to a stable state eventually as the number of injected electrons increases for the latter one. Both of them mean that the average SEY of the dielectric surface will be unity in the end. Since the electrostatic field generated by the charge deposited on the dielectric surface can reduce the risk of occurrence of multipactor, the electret material could be used in the design of the dielectric-loaded microwave devices to improve the multipactor threshold.
      Corresponding author: Li Yong-Dong, leyond@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U1537210) and the China Postdoctoral Science Foundation (Grant No. 2018M633509).
    [1]

    Farnsworth P T 1934 Franklin Inst. 218 411

    [2]

    Vaughan J R M 1988 IEEE Trans. Electron Dev. 35 1172

    [3]

    Rozario N, Lenzing H 1994 IEEE Trans. MTT 42 558

    [4]

    Lu Q L, Zhou Z Y, Shi L Q, Zhao G Q 2005 Chin. Phys. 14 1465

    [5]

    Udiljak R, Anderson D, Ingvarson P, Jordan U, Jostell U, Lapierre L, Li G, Lisak M, Puech J, Sombrin J 2003 IEEE Trans. Plasma Sci. 31 396

    [6]

    Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120

    [7]

    Ang L K, Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290

    [8]

    Nieter C, Stoltz P H, Roark C, Mahalingam S 2010 AIP Conf. Proc. 1299 399

    [9]

    Gill E W B, Engel A V 1948 Proc. Roy. Soc. London A 192 446

    [10]

    Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580

    [11]

    Anza S, Vicente C, Gil J, Boria V E, Gimeno B, Raboso D 2010 Phys. Plasmas 17 062110

    [12]

    Lin S, Wang H G, Li Y, Liu C L, Zhang N, Cui W Z, Neuber A 2015 Phys. Plasmas 22 082114

    [13]

    Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193

    [14]

    Birdsall C K, Langdon A B 1984 Plasma Physics via Computer Simulation (New York: McGraw Hill Higher Education) pp1-400

    [15]

    Keneshloo R, Dadashzadeh G, Frotanpour A, Okhovvat M 2012 J.Commun. Eng. 1 18

    [16]

    Chang C, Li Y D, Verboncoeur J, Liu Y S, Liu C L 2017 Phys. Plasmas 24 040702

    [17]

    Chang C, Liu G Z, Huang H J, Chen C H, Fang J Y 2009 Phys. Plasmas 16 083501

    [18]

    Gold S H, Jing C, Gai W, Kanareykin A 2014 IEEE International Conference on Plasma Sciences Washington, USA, May 25-29, 2014 p1

    [19]

    Torregrosa G, Coves A, Vicente C P, Prez A M, Gimeno B 2006 IEEE Trans. Electron Dev. 27 619

    [20]

    Torregrosa G, Coves A, Martinez B G, Montero I, Vicente C, Boria V E 2010 IEEE Trans. Electron Dev. 57 1160

    [21]

    Torregrosa G, Coves A, Blas A A S, Prez A M, Vicente C P, Gimeno B, Boria V E 2005 Proceesings of MULCOPIM 2005 Noordwijk, The Netherlands, September 12-15, 2005

    [22]

    Coves A, Torregrosa G, Vicente C, Gimeno B, Boria V E 2008 IEEE Trans. Electron Dev. 55 2505

    [23]

    Sounas A 2015 Ph. D. Dissertation (Lausanne: cole Polytechnique Fdrale de Lausanne)

    [24]

    Sounas A, Sorolla E, Mattes M 2014 Proceedings of MULCOPIM Valencia, Spain, September 17-19, 2014

    [25]

    Sounas A L, Sorolla E, Mattes M 2014 European Conference on Antennas and Propagation Hague, Netherlands, April 6-11, 2014 p1469

    [26]

    Sorolla E, Belhaj M, Sombrin J, Puech J 2017 Phys. Plasmas 24 103508

    [27]

    Wang H G, Zhai Y G, Li J X, Li Y, Wang R, Wang X B, Cui W Z, Li Y D 2016 Acta Phys. Sin. 65 237901 (in Chinese) [王洪广, 翟永贵, 李记肖, 李韵, 王瑞, 王新波, 崔万照, 李永东 2016 物理学报 65 237901]

    [28]

    Vaughan J R M 1989 IEEE Trans. Electron Dev. 36 1963

    [29]

    Vicente C, Mattes M, Wolk D, Hartnagel H L, Mosig J R, Raboso D 2006 The 27th International Power Modulator Symposium Arlington, VA, USA, May 14-18, 2006 p22

  • [1]

    Farnsworth P T 1934 Franklin Inst. 218 411

    [2]

    Vaughan J R M 1988 IEEE Trans. Electron Dev. 35 1172

    [3]

    Rozario N, Lenzing H 1994 IEEE Trans. MTT 42 558

    [4]

    Lu Q L, Zhou Z Y, Shi L Q, Zhao G Q 2005 Chin. Phys. 14 1465

    [5]

    Udiljak R, Anderson D, Ingvarson P, Jordan U, Jostell U, Lapierre L, Li G, Lisak M, Puech J, Sombrin J 2003 IEEE Trans. Plasma Sci. 31 396

    [6]

    Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120

    [7]

    Ang L K, Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290

    [8]

    Nieter C, Stoltz P H, Roark C, Mahalingam S 2010 AIP Conf. Proc. 1299 399

    [9]

    Gill E W B, Engel A V 1948 Proc. Roy. Soc. London A 192 446

    [10]

    Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580

    [11]

    Anza S, Vicente C, Gil J, Boria V E, Gimeno B, Raboso D 2010 Phys. Plasmas 17 062110

    [12]

    Lin S, Wang H G, Li Y, Liu C L, Zhang N, Cui W Z, Neuber A 2015 Phys. Plasmas 22 082114

    [13]

    Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193

    [14]

    Birdsall C K, Langdon A B 1984 Plasma Physics via Computer Simulation (New York: McGraw Hill Higher Education) pp1-400

    [15]

    Keneshloo R, Dadashzadeh G, Frotanpour A, Okhovvat M 2012 J.Commun. Eng. 1 18

    [16]

    Chang C, Li Y D, Verboncoeur J, Liu Y S, Liu C L 2017 Phys. Plasmas 24 040702

    [17]

    Chang C, Liu G Z, Huang H J, Chen C H, Fang J Y 2009 Phys. Plasmas 16 083501

    [18]

    Gold S H, Jing C, Gai W, Kanareykin A 2014 IEEE International Conference on Plasma Sciences Washington, USA, May 25-29, 2014 p1

    [19]

    Torregrosa G, Coves A, Vicente C P, Prez A M, Gimeno B 2006 IEEE Trans. Electron Dev. 27 619

    [20]

    Torregrosa G, Coves A, Martinez B G, Montero I, Vicente C, Boria V E 2010 IEEE Trans. Electron Dev. 57 1160

    [21]

    Torregrosa G, Coves A, Blas A A S, Prez A M, Vicente C P, Gimeno B, Boria V E 2005 Proceesings of MULCOPIM 2005 Noordwijk, The Netherlands, September 12-15, 2005

    [22]

    Coves A, Torregrosa G, Vicente C, Gimeno B, Boria V E 2008 IEEE Trans. Electron Dev. 55 2505

    [23]

    Sounas A 2015 Ph. D. Dissertation (Lausanne: cole Polytechnique Fdrale de Lausanne)

    [24]

    Sounas A, Sorolla E, Mattes M 2014 Proceedings of MULCOPIM Valencia, Spain, September 17-19, 2014

    [25]

    Sounas A L, Sorolla E, Mattes M 2014 European Conference on Antennas and Propagation Hague, Netherlands, April 6-11, 2014 p1469

    [26]

    Sorolla E, Belhaj M, Sombrin J, Puech J 2017 Phys. Plasmas 24 103508

    [27]

    Wang H G, Zhai Y G, Li J X, Li Y, Wang R, Wang X B, Cui W Z, Li Y D 2016 Acta Phys. Sin. 65 237901 (in Chinese) [王洪广, 翟永贵, 李记肖, 李韵, 王瑞, 王新波, 崔万照, 李永东 2016 物理学报 65 237901]

    [28]

    Vaughan J R M 1989 IEEE Trans. Electron Dev. 36 1963

    [29]

    Vicente C, Mattes M, Wolk D, Hartnagel H L, Mosig J R, Raboso D 2006 The 27th International Power Modulator Symposium Arlington, VA, USA, May 14-18, 2006 p22

  • [1] Zhang Jian-Wei, Niu Ying, Yan Run-Qi, Zhang Rong-Qi, Cao Meng, Li Yong-Dong, Liu Chun-Liang, Zhang Jia-Wei. Analysis of effect of bulk vacancy defect on secondary electron emission characteristics of Al2O3. Acta Physica Sinica, 2024, 73(15): 157902. doi: 10.7498/aps.73.20240577
    [2] Hu Xiao-Chuan, Liu Yang-Xi, Chu Kun, Duan Chao-Feng. Effect of amorphous carbon film on secondary electron emission of metal. Acta Physica Sinica, 2024, 73(4): 047901. doi: 10.7498/aps.73.20231604
    [3] Meng Xiang-Chen, Wang Dan, Cai Ya-Hui, Ye Zhen, He Yong-Ning, Xu Ya-Nan. Secondary electron emission suppression on alumina surface and its application in multipactor suppression. Acta Physica Sinica, 2023, 72(10): 107901. doi: 10.7498/aps.72.20222404
    [4] Chen Long, Sun Shao-Juan, Jiang Bo-Rui, Duan Ping, An Yu-Hao, Yang Ye-Hui. Characteristics of non-Maxwellian magnetized sheath with secondary electron emission. Acta Physica Sinica, 2021, 70(24): 245201. doi: 10.7498/aps.70.20211061
    [5] Weng Ming, Xie Shao-Yi, Yin Ming, Cao Meng. Influence of secondary electron emission characteristic of dielectric materials on microwave breakdown. Acta Physica Sinica, 2020, 69(8): 087901. doi: 10.7498/aps.69.20200026
    [6] Bai Chun-Jiang, Feng Guo-Bao, Cui Wan-Zhao, He Yong-Ning, Zhang Wen, Hu Shao-Guang, Ye Ming, Hu Tian-Cun, Huang Guang-Sun, Wang Qi. Suppressing second electron yield based on porous anodic alumina. Acta Physica Sinica, 2018, 67(3): 037902. doi: 10.7498/aps.67.20172243
    [7] Wang Xin-Bo, Zhang Xiao-Ning, Li Yun, Cui Wan-Zhao, Zhang Hong-Tai, Li Yong-Dong, Wang Hong-Guang, Zhai Yong-Gui, Liu Chun-Liang. Particle simulation and analysis of threshold for multicarrier multipactor. Acta Physica Sinica, 2017, 66(15): 157901. doi: 10.7498/aps.66.157901
    [8] Wang Xin-Bo, Li Yong-Dong, Cui Wan-Zhao, Li Yun, Zhang Hong-Tai, Zhang Xiao-Ning, Liu Chun-Liang. Global threshold analysis of multicarrier multipactor based on the critical density of electrons. Acta Physica Sinica, 2016, 65(4): 047901. doi: 10.7498/aps.65.047901
    [9] Wang Hong-Guang, Zhai Yong-Gui, Li Ji-Xiao, Li Yun, Wang Rui, Wang Xin-Bo, Cui Wan-Zhao, Li Yong-Dong. Fast particle-in-cell simulation method of calculating the multipactor thresholds of microwave devices based on their frequency-domain EM field solutions. Acta Physica Sinica, 2016, 65(23): 237901. doi: 10.7498/aps.65.237901
    [10] Li Shuang, Chang Chao, Wang Jian-Guo, Liu Yan-Sheng, Zhu Meng, Guo Le-Tian, Xie Jia-Ling. Suppression of secondary electron multipactor on dielectric surface in TM mode. Acta Physica Sinica, 2015, 64(13): 137701. doi: 10.7498/aps.64.137701
    [11] Weng Ming, Hu Tian-Cun, Cao Meng, Xu Wei-Jun. Effects of electron incident angle on the secondary electron yield for polyimide. Acta Physica Sinica, 2015, 64(15): 157901. doi: 10.7498/aps.64.157901
    [12] Song Qing-Qing, Wang Xin-Bo, Cui Wan-Zhao, Wang Zhi-Yu, Ran Li-Xin. Probabilistic analysis of the lateral diffusion of secondary electrons in multicarrier multipactor. Acta Physica Sinica, 2014, 63(22): 220205. doi: 10.7498/aps.63.220205
    [13] Ye Ming, He Yong-Ning, Wang Rui, Hu Tian-Cun, Zhang Na, Yang Jing, Cui Wan-Zhao, Zhang Zhong-Bing. Suppression of secondary electron emission by micro-trapping structure surface. Acta Physica Sinica, 2014, 63(14): 147901. doi: 10.7498/aps.63.147901
    [14] Lin Shu, Yan Yang-Jiao, Li Yong-Dong, Liu Chun-Liang. Monte-Carlo method of computing multipactor threshold in microwave devices. Acta Physica Sinica, 2014, 63(14): 147902. doi: 10.7498/aps.63.147902
    [15] Yang Wen-Jin, Li Yong-Dong, Liu Chun-Liang. Model of secondary electron emission at high incident electron energy for metal. Acta Physica Sinica, 2013, 62(8): 087901. doi: 10.7498/aps.62.087901
    [16] Qing Shao-Wei, E Peng, Duan Ping. Effect of wall secondary electron emission on the characteristics of double sheath near the dielectric wall in Hall thruster. Acta Physica Sinica, 2013, 62(5): 055202. doi: 10.7498/aps.62.055202
    [17] Chang Tian-Hai, Zheng Jun-Rong. Monte-Carlo simulation of secondary electron emission from solid metal. Acta Physica Sinica, 2012, 61(24): 241401. doi: 10.7498/aps.61.241401
    [18] Hasi Wu-Li-Ji, Li Xing, Guo Xiang-Yu, Lu Huan-Huan, Lü Zhi-Wei, Lin Dian-Yang, He Wei-Ming, Fan Rui-Qing. Investigation on stimulated Brillouin scattering medium——perfluoropolyether at high and low temperatures. Acta Physica Sinica, 2010, 59(12): 8554-8558. doi: 10.7498/aps.59.8554
    [19] Tang Chang-Jian, Gong Yu-Bin, Yang Yu-Zhi. Dielectric tensor of 2D relativistic motional plasma. Acta Physica Sinica, 2004, 53(4): 1145-1149. doi: 10.7498/aps.53.1145
    [20] Yin Zeng-Qian, Wang Long, Dong Li-Fang, Li Xue-Chen, Chai Zhi-Fang. The mapping equation of micro-discharge in dielectric barrier discharges. Acta Physica Sinica, 2003, 52(4): 929-934. doi: 10.7498/aps.52.929
Metrics
  • Abstract views:  7203
  • PDF Downloads:  155
  • Cited By: 0
Publishing process
  • Received Date:  25 February 2018
  • Accepted Date:  23 April 2018
  • Published Online:  05 August 2018

/

返回文章
返回