Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study on magnetoelectric effect in multiferroic tetragonal BiMnO3

Yuan Ye Tian Bo-Bo Duan Chun-Gang

Citation:

Theoretical study on magnetoelectric effect in multiferroic tetragonal BiMnO3

Yuan Ye, Tian Bo-Bo, Duan Chun-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Perovskite BiMnO3 with ferroelectric and ferromagnetic ordering simultaneously, as a kind of multiferroics, can be expected to have the coupling between the magnetic and dielectric properties as well as their control by the application of electric fields. This advantage can make BiMnO3 a good candidate for an artificial synapse material. Under the framework of the density functional theory, in this paper we adopt the generalized gradient approximation (GGA+U) plane wave pseudopotential method to calculate the ferroelectricity double-well potential curves and magnetic moments of Mn of tetragonal BiMnO3, with 0.18% and 4% strain exerted in its x-y plane. The results show that the magnetic moment of Mn monotonically increases from paraelectric state to ferroelectric state. It means that the ferromagnetic property of tetragonal BiMnO3 can be controlled by the intensity of polarization. The greater the stress, the greater the range of magnetic moment is. This would imply that the multiferroic artificial synapse device based on BiMnO3 can bring another degree of freedom into designing the complex cognitive systems of artificial intelligence in the future.
      Corresponding author: Tian Bo-Bo, bbtian@ee.ecnu.edu.cn
    • Funds: Project supported by the Shanghai Science and Technology Innovation Action Plan, China (Grant No. 17JC1402500), the Shanghai Sailing Program, China (Grant No. 17YF1404200), and the National Postdoctoral Program for Innovative Talents, China (Grant No. BX201600052).
    [1]

    Yang J J, Strukov D B, Stewart D R 2013 Nat. Nanotechnol. 8 13

    [2]

    Yang Y, Wen J, Guo L, Wan X, Du P, Feng P, Shi Y, Wan Q 2016 ACS Appl. Mater. Interfaces 8 30281

    [3]

    Hebb D O 1949 The Organization of Behavior: A Neuropsychological Theory (New York: John Wiley and Sons, Inc.)

    [4]

    Kandel E R 2001 Science 294 1030

    [5]

    Burke S N, Barnes C A 2006 Nat. Rev. Neurosci. 7 30

    [6]

    Merolla P A, Arthur J V, Alvarez-Icaza R 2014 Science 345 668

    [7]

    Versace M, Chandler B 2010 IEEE Spectrum 47 30

    [8]

    Smith L S 2006 Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models with Emerging Technologies (New York: Springer) pp433-475

    [9]

    Indiveri G, Chicca E, Douglas R 2006 IEEE Trans. Neural Networks 17 211

    [10]

    Song S, Miller K D, Abbott L F 2000 Nature Neurosci. 3 919

    [11]

    Bi G Q, Poo M M 1998 J. Neurosci. 18 10464

    [12]

    Douglas R, Mahowald M, Mead C 1995 Annu. Rev. Neurosci. 18 255

    [13]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297

    [14]

    Boyn S, Grollier J, Lecerf G, Xu B, Locatelli N, Fusil S, Girod S, Carretero C, Garcia K, Xavier S, Tomas J, Bellaiche L, Bibes M, Barthlmy A, Saghi S, Garcia V 2017 Nat. Commun. 8 14736

    [15]

    Chanthbouala A, Garcia V, Cherifi R O, Bouzehouane K, Fusil S, Moya X, Xavier S, Yamada H, Deranlot C, Mathur N D, Bibes M, Barthlmy A, Grollier J 2012 Nat. Mater. 11 860

    [16]

    Kim D J, Lu H, Ryu S, Bark C W, Eom C B, Tsymbal E Y, Gruverman A 2012 Nano Lett. 12 5697

    [17]

    Hill N A, Rabe K M 1999 Phys. Rev. B 59 8759

    [18]

    Seshadri R, Hill N A 2001 Chem. Mater. 13 2892

    [19]

    Plov L, Chandra P, Rabe K M 2010 Phys. Rev. B 82 075432

    [20]

    Chanthbouala A, Matsumoto R, Grollier J, Cros V, Anane A, Fert A, Khvalkovskiy A V, Zvezdin K A, Nishimura K, Nagamine Y, Maehara H, Tsunekawa K, Fukushima A, Yuasa S 2011 Nat. Phys. 7 626

    [21]

    Lequeux S, Sampaio J, Cros V, Yakushiji K, Fukushima A, Matsumoto R, Kubota H, Yuasa S, Grollier J 2016 Sci. Rep. 6 31510

    [22]

    Biswas A K, Atulasimha J, Bandyopadhyay S 2015 Nanotechnology 26 285201

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [24]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [25]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [26]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [27]

    Blchl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B 49 16223

    [28]

    Dudarev S L, Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505

    [29]

    Gao Y C, Duan C G, Tang X D, Hu Z G, Yang P, Zhu Z, Chu J 2013 J. Phys.: Condens. Matter 25 165901

  • [1]

    Yang J J, Strukov D B, Stewart D R 2013 Nat. Nanotechnol. 8 13

    [2]

    Yang Y, Wen J, Guo L, Wan X, Du P, Feng P, Shi Y, Wan Q 2016 ACS Appl. Mater. Interfaces 8 30281

    [3]

    Hebb D O 1949 The Organization of Behavior: A Neuropsychological Theory (New York: John Wiley and Sons, Inc.)

    [4]

    Kandel E R 2001 Science 294 1030

    [5]

    Burke S N, Barnes C A 2006 Nat. Rev. Neurosci. 7 30

    [6]

    Merolla P A, Arthur J V, Alvarez-Icaza R 2014 Science 345 668

    [7]

    Versace M, Chandler B 2010 IEEE Spectrum 47 30

    [8]

    Smith L S 2006 Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models with Emerging Technologies (New York: Springer) pp433-475

    [9]

    Indiveri G, Chicca E, Douglas R 2006 IEEE Trans. Neural Networks 17 211

    [10]

    Song S, Miller K D, Abbott L F 2000 Nature Neurosci. 3 919

    [11]

    Bi G Q, Poo M M 1998 J. Neurosci. 18 10464

    [12]

    Douglas R, Mahowald M, Mead C 1995 Annu. Rev. Neurosci. 18 255

    [13]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297

    [14]

    Boyn S, Grollier J, Lecerf G, Xu B, Locatelli N, Fusil S, Girod S, Carretero C, Garcia K, Xavier S, Tomas J, Bellaiche L, Bibes M, Barthlmy A, Saghi S, Garcia V 2017 Nat. Commun. 8 14736

    [15]

    Chanthbouala A, Garcia V, Cherifi R O, Bouzehouane K, Fusil S, Moya X, Xavier S, Yamada H, Deranlot C, Mathur N D, Bibes M, Barthlmy A, Grollier J 2012 Nat. Mater. 11 860

    [16]

    Kim D J, Lu H, Ryu S, Bark C W, Eom C B, Tsymbal E Y, Gruverman A 2012 Nano Lett. 12 5697

    [17]

    Hill N A, Rabe K M 1999 Phys. Rev. B 59 8759

    [18]

    Seshadri R, Hill N A 2001 Chem. Mater. 13 2892

    [19]

    Plov L, Chandra P, Rabe K M 2010 Phys. Rev. B 82 075432

    [20]

    Chanthbouala A, Matsumoto R, Grollier J, Cros V, Anane A, Fert A, Khvalkovskiy A V, Zvezdin K A, Nishimura K, Nagamine Y, Maehara H, Tsunekawa K, Fukushima A, Yuasa S 2011 Nat. Phys. 7 626

    [21]

    Lequeux S, Sampaio J, Cros V, Yakushiji K, Fukushima A, Matsumoto R, Kubota H, Yuasa S, Grollier J 2016 Sci. Rep. 6 31510

    [22]

    Biswas A K, Atulasimha J, Bandyopadhyay S 2015 Nanotechnology 26 285201

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [24]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [25]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [26]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [27]

    Blchl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B 49 16223

    [28]

    Dudarev S L, Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505

    [29]

    Gao Y C, Duan C G, Tang X D, Hu Z G, Yang P, Zhu Z, Chu J 2013 J. Phys.: Condens. Matter 25 165901

  • [1] Chen Kai-Hui, Fan Zhen, Dong Shuai, Li Wen-Jie, Chen Yi-Hong, Tian Guo, Chen De-Yang, Qin Ming-Hui, Zeng Min, Lu Xu-Bing, Zhou Guo-Fu, Gao Xing-Sen, Liu Jun-Ming. Perovskite-phase interfacial intercalated layer-induced performance enhancement in SrFeOx-based memristors. Acta Physica Sinica, 2023, 72(9): 097301. doi: 10.7498/aps.72.20221934
    [2] Wen Xin-Yu, Wang Ya-Sai, He Yu-Hui, Miao Xiang-Shui. Memristive brain-like computing. Acta Physica Sinica, 2022, 71(14): 140501. doi: 10.7498/aps.71.20220666
    [3] Zhang Yu-Qi, Wang Jun-Jie, Lü Zi-Yu, Han Su-Ting. Multimode modulated memristors for in-sensor computing system. Acta Physica Sinica, 2022, 71(14): 148502. doi: 10.7498/aps.71.20220226
    [4] Guo Ke-Xin, Yu Hai-Yang, Han Hong, Wei Huan-Huan, Gong Jiang-Dong, Liu Lu, Huang Qian, Gao Qing-Yun, Xu Wen-Tao. Artificial synapse based on MoO3 nanosheets prepared by hydrothermal synthesis. Acta Physica Sinica, 2020, 69(23): 238501. doi: 10.7498/aps.69.20200928
    [5] Xu Wei, Wang Yu-Qi, Li Yue-Feng, Gao Fei, Zhang Miao-Cheng, Lian Xiao-Juan, Wan Xiang, Xiao Jian, Tong Yi. Design of novel memristor-based neuromorphic circuit and its application in classical conditioning. Acta Physica Sinica, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [6] Liu En-Hua, Chen Zhao, Wen Xiao-Li, Chen Chang-Le. Influence of paramagnetic La2/3Sr1/3MnO3 layer on the multiferroic property of Bi0.8Ba0.2FeO3 film. Acta Physica Sinica, 2016, 65(11): 117701. doi: 10.7498/aps.65.117701
    [7] Mao Xiang-Yu, Zou Bao-Wen, Sun Hui, Chen Chun-Yan, Chen Xiao-Bing. Effects of Co-doping on multiferroic properties of Bi6Fe2-xCoxTi3O18 ceramics. Acta Physica Sinica, 2015, 64(21): 217701. doi: 10.7498/aps.64.217701
    [8] Li Yong-Chao, Zhou Hang, Pan Dan-Feng, Zhang Hao, Wan Jian-Guo. Exchange bias effect and magnetoelectric coupling behaviors in multiferroic Co/Co3O4/PZT composite thin films. Acta Physica Sinica, 2015, 64(9): 097701. doi: 10.7498/aps.64.097701
    [9] Song Gui-Lin, Su Jian, Zhang Na, Chang Fang-Gao. Dielectric properties and high temperature magnetic behavior on multiferroics Bi1-xCaxFeO3 ceramics. Acta Physica Sinica, 2015, 64(24): 247502. doi: 10.7498/aps.64.247502
    [10] Chen Yan-Bin, Zhang Fan, Zhang Lun-Yong, Zhou Jian, Zhang Shan-Tao, Chen Yan-Feng. Exploring multiferroic materials based on artificial superlattice LaFeO3-YMnO3 and natural superlattice n-LaFeO3-Bi4Ti3O12 thin films. Acta Physica Sinica, 2015, 64(9): 097502. doi: 10.7498/aps.64.097502
    [11] Chen Qiang, Zhong Chong-Gui, Yuan Guo-Qiu, Dong Zheng-Chao, Fang Jing-Huai. Research on optical absorption and distortion driving in multiferroic HoMnO3 from the first principles. Acta Physica Sinica, 2013, 62(12): 127502. doi: 10.7498/aps.62.127502
    [12] Wang Huai-Qiang, Yang Yun-You, Ju Yan, Sheng Li, Xing Ding-Yu. Phase transition of ultrathin Bi2Se3 film sandwiched between ferromagnetic insulators. Acta Physica Sinica, 2013, 62(3): 037202. doi: 10.7498/aps.62.037202
    [13] Wang Mei-Na, Li Ying, Wang Tian-Xing, Liu Guo-Dong. Magnetic properties of multiferroic material DyMnO3 in orthorhombic structure. Acta Physica Sinica, 2013, 62(22): 227101. doi: 10.7498/aps.62.227101
    [14] Wei Jie, Chen Yan-Jun, Xu Zhuo. Study on the size-dependent magnetic properties of multiferroic BiFeO3 nanoparticles. Acta Physica Sinica, 2012, 61(5): 057502. doi: 10.7498/aps.61.057502
    [15] Guo Dong-Yun, Li Chao, Wang Chuan-Bin, Shen Qiang, Zhang Lian-Meng, Tu Rong, Goto Takashi. Preparation of multiferroic of Bi0.85Nd0.15FeO3 thin films prepared by sol-gel method. Acta Physica Sinica, 2010, 59(8): 5772-5776. doi: 10.7498/aps.59.5772
    [16] Hu Xing, Wang Wei, Mao Xiang-Yu, Chen Xiao-Bing. Magnetic and electric properties of Co-doped Bi5Ti3FeO15 multiferroic ceramics. Acta Physica Sinica, 2010, 59(11): 8160-8166. doi: 10.7498/aps.59.8160
    [17] Yao Chang-Da, Gong Jiang-Feng, Geng Fang-Fang, Gao Hong, Xu Yun-Ling, Zhang Ai-Mei, Tang Chun-Mei, Zhu Wei-Hua. BiMnO3 nanopowders synthesized at low temperature and low pressure nanoparticles and their physical properties. Acta Physica Sinica, 2010, 59(8): 5332-5337. doi: 10.7498/aps.59.5332
    [18] Luo Bing-Cheng, Zhou Chao-Chao, Chen Chang-Le, Jin Ke-Xin. Multiferroicity in single phase Bi0.9Ba0.1Fe0.85Mn0.15O3 ceramic. Acta Physica Sinica, 2009, 58(7): 4563-4566. doi: 10.7498/aps.58.4563
    [19] Zhong Chong-Gui, Jiang Qing, Fang Jing-Huai, Ge Cun-Wang. Magnetoelectric coupling and magnetoelectric properties of single-phase ABO3 type multiferroic materials. Acta Physica Sinica, 2009, 58(5): 3491-3496. doi: 10.7498/aps.58.3491
    [20] Zhong Chong-Gui, Jiang Qing, Fang Jing-Huai, Jiang Xue-Fan, Luo Li-Jin. Electric-field-induced magnetization in 1-3 type multiferroic nanocomposite thin film. Acta Physica Sinica, 2009, 58(10): 7227-7234. doi: 10.7498/aps.58.7227
Metrics
  • Abstract views:  6640
  • PDF Downloads:  342
  • Cited By: 0
Publishing process
  • Received Date:  12 May 2018
  • Accepted Date:  15 June 2018
  • Published Online:  05 August 2018

/

返回文章
返回