Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of graphene nanoflakes with large spin property

Zhang Shu-Ting Sun Zhi Zhao Lei

Citation:

First-principles study of graphene nanoflakes with large spin property

Zhang Shu-Ting, Sun Zhi, Zhao Lei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Based on density functional theory, the extraordinary magnetic properties of finite graphene fragments (graphene nanoflake, GNF) with different shapes are studied by first-principles electronic structure calculations with all electron numerical-orbital basis set scheme as implemented in DMol3 code of Materials Studio 8.0 software package. According to the graph theory, the spin characteristics of several typical hydrogen-terminated GNF shaped into 3-fold and 6-fold highly rotational symmetries as well as two specific geometrical structures related to graphene nanoribbon are analyzed and verified by first-principles calculations. In some characteristic GNFs shaped into a singular graph, the electron energy matrix becomes singular and multiple states of zero eigenvalue appear which is called nonbonding state (NBS). In these singular graph structures, all the -bonds cannot be satisfied simultaneously and spin-aligned singly occupied molecular orbitals are generated from degeneracy at Fermi-level, which means that the topological frustration occurs. It is proved that the electronic spin magnetic order of GNF originates from topological frustration of conjugate -bonds determined by its shape. The net spin of triangular GNF with zigzag edges is not zero, like an artificial ferromagnetic atom, increasing proportionally with its linear dimension. According to the principle of topological frustration, the large net spins and specific spin distributions can be reasonably introduced into graphene nanocrystals, such as by triangulation. The NBSs of zigzag-edged triangular GNFs with nanoscale dimension create 0.4-0.7 eV energy gaps at Fermi-level to achieve stable spin-alignment at ambient temperature. Even though the linear size of zigzag-edged triangular GNF increases beyond nanoscale, the maximum energy gap is still ~0.68 eV and thus the magnetic moment measurement is feasible at room ambient temperature. The total spin of the complex fractal structure constructed by zigzag-edged triangular GNF unit increases exponentially with the fractal level, due to the increased possibility of topological frustration from aggrandizing boundary. In addition, a large net spin can also be acquired by hollowed-out zigzag triangle in graphene with a net spin value of at least 1.00 and a spin-polarization split band gap of ~0.40 eV. The basic design principle for obtaining large spin and controlling spin state distribution by etching GNF of various patterns in graphene atomic layer is presented. In contrast to traditional chemical synthesis of obtaining large spin limited by complicated reaction pathways, the GNF with large spin easily exceeding the reported highest spin in conjugated polymers can be practically produced by carving lithography. It is suggested that the GNF with designed topological structures fabricated by pattern carving technique can be efficiently used to realize the controllable spintronic nanomaterials and devices.
      Corresponding author: Sun Zhi, sunzhihust@sohu.com
    • Funds: Projects supported by the Heilongjiang Natural Science Foundation of Heilongjiang Province, China (Grant No. QC2015C063) and the China Postdoctoral Science Foundation (Grant No. 2013M531058).
    [1]

    Jabar A, Masrour R 2017 Superlattice. Microst. 112 541

    [2]

    Masrour R, Jabar A 2018 Physica A 497 211

    [3]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [4]

    Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S 2007 Nature 446 60

    [5]

    Berger C, Song Z, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191

    [6]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [7]

    Jellal A 2016 Phys. Lett. A 380 1514

    [8]

    Lai W C, Wang Z M, Li Y L, Wang X, Liu Y, Liu X Y 2018 J. Phys. Chem. C 122 8473

    [9]

    Ding Y, Wang Y 2017 J. Mater. Chem. C 5 10728

    [10]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [11]

    Chuang C, Roy P, Ravindranath R, Periasamy A P, Chang H T, Liang C T 2016 Mater. Lett. 170 110

    [12]

    Xie H, Lu W C, Zhang W, Qin P H, Wang C Z, Ho K M 2013 Chem. Phys. Lett. 572 48

    [13]

    Fajtlowicz S, John P E, Sachs H 2005 Croat. Chem. Acta 78 195

    [14]

    Hod O, Barone V, Peralta J E, Scuseria G E 2007 Nano Lett. 7 2295

    [15]

    Wang W L, Meng S, Kaxiras E 2008 Nano Lett. 8 241

    [16]

    Khler C, Seifert G, Frauenheim T 2005 Chem. Phys. 309 23

    [17]

    Andzelm J, King-Smith R D, Fitzgerald G 2001 Chem. Phys. Lett. 335 321

    [18]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X L, Burke K 2008 Phys. Rev. Lett. 100 136406

    [19]

    Chantis A N, Christensen N E, Svane A, Cardona M 2010 Phys. Rev. B 81 205205

    [20]

    Baker J, Kessi A, Delley B 1996 J. Chem. Phys. 105 192

    [21]

    Edwards D M, Katsnelson M I 2006 J. Phys. B 18 7209

    [22]

    Zha X H, Ren J C, Feng L, Bai X J, Luo K, Zhang Y Q, He J, Huang Q, Franciscod J S, Du S Y 2018 Nanoscale 10 8763

    [23]

    Trauzettel B, Bulaev D V, Loss D, Burkard G 2007 Nat. Phys. 3 192

    [24]

    Fairbrother A, Ramon J, Valencia S, Lauber B, Shorubalko I, Ruffieux P, Hintermann T, Fasel R 2017 Nanoscale 9 2785

    [25]

    Jiang D E, Sumpter B G, Dai S 2007 J. Chem. Phys. 126 124701

    [26]

    Li F, Li T, Chen F, Zhang F P 2015 Sci. Rep. 5 9355

    [27]

    Ezawa M 2008 Physica E 40 1421

    [28]

    Fernndez-Rossier J, Palacios J J 2007 Phys. Rev. Lett. 99 177204

    [29]

    Hod O, Barone V, Scuseria G E 2008 Phys. Rev. B 77 035411

  • [1]

    Jabar A, Masrour R 2017 Superlattice. Microst. 112 541

    [2]

    Masrour R, Jabar A 2018 Physica A 497 211

    [3]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [4]

    Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S 2007 Nature 446 60

    [5]

    Berger C, Song Z, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191

    [6]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [7]

    Jellal A 2016 Phys. Lett. A 380 1514

    [8]

    Lai W C, Wang Z M, Li Y L, Wang X, Liu Y, Liu X Y 2018 J. Phys. Chem. C 122 8473

    [9]

    Ding Y, Wang Y 2017 J. Mater. Chem. C 5 10728

    [10]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [11]

    Chuang C, Roy P, Ravindranath R, Periasamy A P, Chang H T, Liang C T 2016 Mater. Lett. 170 110

    [12]

    Xie H, Lu W C, Zhang W, Qin P H, Wang C Z, Ho K M 2013 Chem. Phys. Lett. 572 48

    [13]

    Fajtlowicz S, John P E, Sachs H 2005 Croat. Chem. Acta 78 195

    [14]

    Hod O, Barone V, Peralta J E, Scuseria G E 2007 Nano Lett. 7 2295

    [15]

    Wang W L, Meng S, Kaxiras E 2008 Nano Lett. 8 241

    [16]

    Khler C, Seifert G, Frauenheim T 2005 Chem. Phys. 309 23

    [17]

    Andzelm J, King-Smith R D, Fitzgerald G 2001 Chem. Phys. Lett. 335 321

    [18]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X L, Burke K 2008 Phys. Rev. Lett. 100 136406

    [19]

    Chantis A N, Christensen N E, Svane A, Cardona M 2010 Phys. Rev. B 81 205205

    [20]

    Baker J, Kessi A, Delley B 1996 J. Chem. Phys. 105 192

    [21]

    Edwards D M, Katsnelson M I 2006 J. Phys. B 18 7209

    [22]

    Zha X H, Ren J C, Feng L, Bai X J, Luo K, Zhang Y Q, He J, Huang Q, Franciscod J S, Du S Y 2018 Nanoscale 10 8763

    [23]

    Trauzettel B, Bulaev D V, Loss D, Burkard G 2007 Nat. Phys. 3 192

    [24]

    Fairbrother A, Ramon J, Valencia S, Lauber B, Shorubalko I, Ruffieux P, Hintermann T, Fasel R 2017 Nanoscale 9 2785

    [25]

    Jiang D E, Sumpter B G, Dai S 2007 J. Chem. Phys. 126 124701

    [26]

    Li F, Li T, Chen F, Zhang F P 2015 Sci. Rep. 5 9355

    [27]

    Ezawa M 2008 Physica E 40 1421

    [28]

    Fernndez-Rossier J, Palacios J J 2007 Phys. Rev. Lett. 99 177204

    [29]

    Hod O, Barone V, Scuseria G E 2008 Phys. Rev. B 77 035411

  • [1] Yang Hai-Lin, Chen Qi-Li, Gu Xing, Lin Ning. First-principles calculations of O-atom diffusion on fluorinated graphene. Acta Physica Sinica, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [2] Deng Xu-Liang, Ji Xian-Fei, Wang De-Jun, Huang Ling-Qin. First principle study on modulating of Schottky barrier at metal/4H-SiC interface by graphene intercalation. Acta Physica Sinica, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [3] Wu Hong-Fen, Feng Pan-Jun, Zhang Shuo, Liu Da-Peng, Gao Miao, Yan Xun-Wang. First-principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [4] First principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211631
    [5] Li Xin, Huang Zhong-Mei, Liu Shi-Rong, Peng Hong-Yan, Huang Wei-Qi. Effect of spin levels broadening in electronic localized states of oxygen-doped nanosilocon localized state. Acta Physica Sinica, 2020, 69(17): 174206. doi: 10.7498/aps.69.20200336
    [6] Chen Xian, Cheng Mei-Juan, Wu Shun-Qing, Zhu Zi-Zhong. First-principle study of structure stability and electronic structures of graphyne derivatives. Acta Physica Sinica, 2017, 66(10): 107102. doi: 10.7498/aps.66.107102
    [7] Li Cong, Zheng You-Jin, Fu Si-Nian, Jiang Hong-Wei, Wang Dan. First-principle study of the magnetism and photocatalyticactivity of RE(La/Ce/Pr/Nd) doping anatase TiO2. Acta Physica Sinica, 2016, 65(3): 037102. doi: 10.7498/aps.65.037102
    [8] Peng Qiong, He Chao-Yu, Li Jin, Zhong Jian-Xin. First-principles study of electronic properties of MoSi2 thin films. Acta Physica Sinica, 2015, 64(4): 047102. doi: 10.7498/aps.64.047102
    [9] Zhang Zhao-Fu, Geng Zhao-Hui, Wang Peng, Hu Yao-Qiao, Zheng Yu-Fei, Zhou Tie-Ge. Properties of 5d atoms doped boron nitride nanotubes:a first-principles calculation and molecular orbital analysis. Acta Physica Sinica, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [10] Wang Ping, Guo Li-Xin, Yang Yin-Tang, Zhang Zhi-Yong. First-principles study on electronic structures of Al, N Co-doped ZnO nanotubes. Acta Physica Sinica, 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [11] Liu Dong-Qi, Chang Yan-Chun, Liu Gang-Qin, Pan Xin-Yu. Electron spin studies of nitrogen vacancy centers in nanodiamonds. Acta Physica Sinica, 2013, 62(16): 164208. doi: 10.7498/aps.62.164208
    [12] Deng Jiao-Jiao, Liu Bo, Gu Mu, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. First principles calculation of electronic structures and optical properties for -CuX(X = Cl, Br, I). Acta Physica Sinica, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [13] Yu Dong-Qi, Zhang Zhao-Hui. First principles calculations of interaction between an armchair-edge graphene nanoribbon and its graphite substrate. Acta Physica Sinica, 2011, 60(3): 036104. doi: 10.7498/aps.60.036104
    [14] Gu Mu, Lin Ling, Liu Bo, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. Fist-principle calculation for electronic structure of M’-GdTaO4. Acta Physica Sinica, 2010, 59(4): 2836-2842. doi: 10.7498/aps.59.2836
    [15] Wang Zhi-Gang, Zhang Yang, Wen Yu-Hua, Zhu Zi-Zhong. First-principles calculation of structural stability and electronic properties of ZnO atomic chains. Acta Physica Sinica, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [16] Lü Quan, Huang Wei-Qi, Wang Xiao-Yun, Meng Xiang-Xiang. The first-principle calculations and analysis on density of states of silion plane (111) formed by nitrogen film. Acta Physica Sinica, 2010, 59(11): 7880-7884. doi: 10.7498/aps.59.7880
    [17] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb on electronic structure of NiTi intermetallic compound: A first-principles study. Acta Physica Sinica, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [18] Tan Xing-Yi, Jin Ke-Xin, Chen Chang-Le, Zhou Chao-Chao. Electronic structure of YFe2B2by first-principles calculation. Acta Physica Sinica, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [19] Ming Xing, Fan Hou-Gang, Hu Fang, Wang Chun-Zhong, Meng Xing, Huang Zu-Fei, Chen Gang. First-principles study on the electronic structures of spin-Peierls compound GeCuO3. Acta Physica Sinica, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [20] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb doping on electronic structure of TiO2/NiTi interface: A first-principle study. Acta Physica Sinica, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
Metrics
  • Abstract views:  7686
  • PDF Downloads:  167
  • Cited By: 0
Publishing process
  • Received Date:  02 May 2018
  • Accepted Date:  04 June 2018
  • Published Online:  20 September 2019

/

返回文章
返回