Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An interconnected state observer for lithium-ion battery based on reduced electrochemical model

Pang Hui Zhang Xu

Citation:

An interconnected state observer for lithium-ion battery based on reduced electrochemical model

Pang Hui, Zhang Xu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The accurate estimation of the solid concentration distribution in anode and cathode, and state-of-charge (SOC) for a Li-ion battery cell is significantly important for developing the real-time monitoring algorithm of the Li-ion cell's working operation, and further establishing an efficient and reliable advanced battery management system (BMS). Firstly, according to the porous electrode theory and concentration theory, in this article we present a systematic optimized model and a method of identifying the key internal state parameters based on a Li-ion cell's enhanced single-particle-model (ESPM), in which, an appropriate parameter vector is identified in the typical hybrid-pulse-power-characterization (HPPC) operation scenario by using the parameter sensitivity analysis method, and then this parameter optimization problem is evaluated by genetic algorithm. It is verified that the maximum relative errors of the cell's output voltage for ESPM are 1.92%, 3.18% and 2.86% under HPPC, 1C-discharge and urban dynamometer driving schedule (UDDS) current profiles, respectively. Secondly, by introducing some assumptions and reduction techniques, the battery ESPM is further reduced and then a novel interconnected state observer is proposed through the combination of the reduced ESPM and H∞ robust control theory framework, which can realize the concurrent estimation of solid concentration and SOC in anode and cathode. Finally, the comparative validation and analysis study are conducted by using the experimental data acquired in HPPC and UDDS condition to demonstrate the effectiveness and feasibility of the proposed interconnected observer. The results show that the maximum relative errors of output voltage for the ESPM, the single-electrode concentration observer (Obsv-1) and the proposed interconnected observer (Obsv-2) of Li-ion cell are 2.0%, 3.8% and 2.6%, respectively, under HPPC operation at 23 ℃; under the same input current profile and operating condition, the maximum relative errors of SOC estimation are 2.4%, 4.7% and 3.4%, respectively. Moreover, the maximum relative errors of cell's output voltage for ESPM, Obsv-1 and Obsv-2 model are 1.9%, 3.2% and 2.1%, respectively, and the maximum relative errors of SOC estimation values for these three mathematical models are 2.1%, 4.4% and 3.2%, respectively. It is concluded that the proposed robust observer for a Li-ion cell can accurately predict the output voltage and SOC, and can also improve the dynamic performance and robust stability of Li-ion cell, which provides a solid theoretical foundation for developing the BMS.
      Corresponding author: Pang Hui, huipang@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51675423).
    [1]

    Huang L, Li J Y 2015 Acta Phys. Sin. 64 108202 (in Chinese) [黄亮, 李建元 2015 物理学报 64 108202]

    [2]

    Cheng J, Li Z, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202 (in Chinese) [程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 物理学报 64 210202]

    [3]

    Boovaragavan V, Harinipriya S, Subramanian V 2008 J. Power Sources 183 361

    [4]

    Feng T, Yang L, Zhao X, Zhang H, Qiang J 2015 J. Power Sources 281 192

    [5]

    Zhang X, Lu J, Yuan S, Yang J, Zhou X 2017 J. Power Sources 345 21

    [6]

    Chaoui H, Mejdoubi A E, Gualous H 2017 IEEE Trans. Veh. Technol. 66 2000

    [7]

    Di D, Stefanopoulou A, Fiengo G 2010 J. Dyn. Syst-T. ASME 132 061302

    [8]

    Bartlett A, Marcicki J, Onori S, Rizzoni G, Yang X G, Miller T 2016 IEEE Trans. Contr. Syst. Technol. 24 384

    [9]

    Tanim T R, Rahn C D, Wang C Y 2015 Energy 80 731

    [10]

    Klein R, Chaturvedi N A, Christensen J, Ahmed J, Findeisen R, Kojic A 2013 IEEE Trans. Contr. Syst. Technol. 21 289

    [11]

    Dey S, Ayalew B, Pisu P 2014 Int. Workshop Variable Struct. Syst. Nantes, France, June 29-July 2, 2014 p1

    [12]

    Allam A, Onori S 2018 IEEE Trans. Ind. Electron. 65 7311

    [13]

    Dey S, Ayalew B, Pisu P 2015 IEEE Trans. Contr. Syst. Technol. 23 1935

    [14]

    Moura S J, Chaturvedi N A, Krstic M 2014 J. Dyn. Syst-T. ASME 136 011015

    [15]

    Moura S J, Argomedo F B, Klein R, Mirtabatabaei A, Krstic M 2017 IEEE Trans. Contr. Syst. Technol. 25 453

    [16]

    Forman J C, Moura S J, Stein J L, Fathy H K 2012 J. Power Sources 210 263

    [17]

    Zhang L, Wang L, Hinds G, Chao L, Zheng J, Li J 2014 J. Power Sources 270 367

    [18]

    Li J, Zou L, Tian F, Dong X, Zou Z, Yang H 2016 J. Electrochem. Soc. 163 A1646

    [19]

    Wang Y, Fang H, Sahinoglu Z, Wada T, Hara S 2015 IEEE Trans. Contr. Syst. Technol. 23 948

    [20]

    Pang H 2018 Acta Phys. Sin. 67 058201 (in Chinese) [庞辉 2018 物理学报 67 058201]

    [21]

    Diwakar V D 2009 Ph. D. Dissertation (St. Louis: Washington University)

    [22]

    Marcicki J, Canova M, Conlisk A T, Rizzoni G 2013 J. Power Sources 237 310

    [23]

    Moura S J, Argomedo F B, Klein R, Mirtabatabaei A, Krstic M 2017 IEEE Trans. Contr. Syst. Technol. 25 453

    [24]

    Fan G, Pan K, Canova M, Marcicki J, Yang X G 2016 J. Electrochem. Soc. 163 A666

    [25]

    Smith K, Wang C Y 2006 J. Power Sources 161 628

    [26]

    Speltino C, Domenico D D, Fiengo G, Stefanopoulou A 2009 European Control Conference (ECC) Budapest, Hungary, August 23-26, 2009 p1053

    [27]

    Zhang L Q, Wang L X, Hinds G, Lyu C, Zheng J, Li J F 2014 J. Power Sources 270 367

    [28]

    Valoen L O, Reimers J N 2005 J. Electrochem. Soc. 152 A882

    [29]

    Ahmed R, El Sayed M, Arasaratnam I, Tjong J, Habibi S 2014 IEEE J. Em. Sel. Top. 2 659

    [30]

    Marcicki J, Todeschini F, Onori S, Canova M 2012 American Control Conference (ACC 2012) Montreal, Canada, June 27-29, 2012 p572

    [31]

    Forman J C, Moura S J, Stein J L, Fathy H K 2012 J. Power Sources 210 263

    [32]

    Vanantwerp J G, Braatz R D 2000 J. Process Contr. 10 363

  • [1]

    Huang L, Li J Y 2015 Acta Phys. Sin. 64 108202 (in Chinese) [黄亮, 李建元 2015 物理学报 64 108202]

    [2]

    Cheng J, Li Z, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202 (in Chinese) [程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 物理学报 64 210202]

    [3]

    Boovaragavan V, Harinipriya S, Subramanian V 2008 J. Power Sources 183 361

    [4]

    Feng T, Yang L, Zhao X, Zhang H, Qiang J 2015 J. Power Sources 281 192

    [5]

    Zhang X, Lu J, Yuan S, Yang J, Zhou X 2017 J. Power Sources 345 21

    [6]

    Chaoui H, Mejdoubi A E, Gualous H 2017 IEEE Trans. Veh. Technol. 66 2000

    [7]

    Di D, Stefanopoulou A, Fiengo G 2010 J. Dyn. Syst-T. ASME 132 061302

    [8]

    Bartlett A, Marcicki J, Onori S, Rizzoni G, Yang X G, Miller T 2016 IEEE Trans. Contr. Syst. Technol. 24 384

    [9]

    Tanim T R, Rahn C D, Wang C Y 2015 Energy 80 731

    [10]

    Klein R, Chaturvedi N A, Christensen J, Ahmed J, Findeisen R, Kojic A 2013 IEEE Trans. Contr. Syst. Technol. 21 289

    [11]

    Dey S, Ayalew B, Pisu P 2014 Int. Workshop Variable Struct. Syst. Nantes, France, June 29-July 2, 2014 p1

    [12]

    Allam A, Onori S 2018 IEEE Trans. Ind. Electron. 65 7311

    [13]

    Dey S, Ayalew B, Pisu P 2015 IEEE Trans. Contr. Syst. Technol. 23 1935

    [14]

    Moura S J, Chaturvedi N A, Krstic M 2014 J. Dyn. Syst-T. ASME 136 011015

    [15]

    Moura S J, Argomedo F B, Klein R, Mirtabatabaei A, Krstic M 2017 IEEE Trans. Contr. Syst. Technol. 25 453

    [16]

    Forman J C, Moura S J, Stein J L, Fathy H K 2012 J. Power Sources 210 263

    [17]

    Zhang L, Wang L, Hinds G, Chao L, Zheng J, Li J 2014 J. Power Sources 270 367

    [18]

    Li J, Zou L, Tian F, Dong X, Zou Z, Yang H 2016 J. Electrochem. Soc. 163 A1646

    [19]

    Wang Y, Fang H, Sahinoglu Z, Wada T, Hara S 2015 IEEE Trans. Contr. Syst. Technol. 23 948

    [20]

    Pang H 2018 Acta Phys. Sin. 67 058201 (in Chinese) [庞辉 2018 物理学报 67 058201]

    [21]

    Diwakar V D 2009 Ph. D. Dissertation (St. Louis: Washington University)

    [22]

    Marcicki J, Canova M, Conlisk A T, Rizzoni G 2013 J. Power Sources 237 310

    [23]

    Moura S J, Argomedo F B, Klein R, Mirtabatabaei A, Krstic M 2017 IEEE Trans. Contr. Syst. Technol. 25 453

    [24]

    Fan G, Pan K, Canova M, Marcicki J, Yang X G 2016 J. Electrochem. Soc. 163 A666

    [25]

    Smith K, Wang C Y 2006 J. Power Sources 161 628

    [26]

    Speltino C, Domenico D D, Fiengo G, Stefanopoulou A 2009 European Control Conference (ECC) Budapest, Hungary, August 23-26, 2009 p1053

    [27]

    Zhang L Q, Wang L X, Hinds G, Lyu C, Zheng J, Li J F 2014 J. Power Sources 270 367

    [28]

    Valoen L O, Reimers J N 2005 J. Electrochem. Soc. 152 A882

    [29]

    Ahmed R, El Sayed M, Arasaratnam I, Tjong J, Habibi S 2014 IEEE J. Em. Sel. Top. 2 659

    [30]

    Marcicki J, Todeschini F, Onori S, Canova M 2012 American Control Conference (ACC 2012) Montreal, Canada, June 27-29, 2012 p572

    [31]

    Forman J C, Moura S J, Stein J L, Fathy H K 2012 J. Power Sources 210 263

    [32]

    Vanantwerp J G, Braatz R D 2000 J. Process Contr. 10 363

  • [1] ZHANG Huirou, ZENG Xiaoqi, LI Jiaxing, REN Yimao, WU Weixiong. Electrochemical-thermal-mechanical overcharge model on a scale of particle for lithium-ion batteries. Acta Physica Sinica, 2025, 74(3): 038201. doi: 10.7498/aps.74.20240984
    [2] Wang Hao, Cao Shan-Shan, Su Jun-Hao, Xu Hai-Tao, Wang Zhen, Zheng Jia-Jin, Wei Wei. Temperature field monitoring of lithium battery pack based on double-clad fiber Bragg grating sensor. Acta Physica Sinica, 2022, 71(10): 104207. doi: 10.7498/aps.71.20212302
    [3] Li Xiao-Jie, Yu Yun-Tai, Zhang Zhi-Wen, Dong Xiao-Rui. External characteristics of lithium-ion power battery based on electrochemical aging decay model. Acta Physica Sinica, 2022, 71(3): 038803. doi: 10.7498/aps.71.20211401
    [4] Xie Yi-Zhan, Cheng Xi-Ming. A new method to solve electrolyte diffusion equations for single particle model of lithium-ion batteries. Acta Physica Sinica, 2022, 71(4): 048201. doi: 10.7498/aps.71.20211619
    [5] Liu Xiao-Wei, Song Hui, Guo Mei-Qing, Wang Gen-Wei, Chi Qing-Zhuo. Simulation and optimization of silicon/carbon core-shell structures in lithium-ion batteries based on electrochemical-mechanical coupling model. Acta Physica Sinica, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [6] A New Method to Solve the Electrolyte Diffusion Equations of Single Particle Model for Lithium-ion Batteries. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211619
    [7] Li Tao, Cheng Xi-Ming, Hu Chen-Hua. Comparative study of reduced-order electrochemical models of the lithium-ion battery. Acta Physica Sinica, 2021, 70(13): 138801. doi: 10.7498/aps.70.20201894
    [8] Zeng Jian-Bang,  Guo Xue-Ying,  Liu Li-Chao,  Shen Zu-Ying,  Shan Feng-Wu,  Luo Yu-Feng. Mechanism of influence of separator microstructure on performance of lithium-ion battery based on electrochemical-thermal coupling model. Acta Physica Sinica, 2019, 68(1): 018201. doi: 10.7498/aps.68.20181726
    [9] Liu Zheng-Yu, Yang Kun, Wei Zi-Hong, Yao Li-Yang. Electrochemical model of lithium ion battery with simplified liquid phase diffusion equation. Acta Physica Sinica, 2019, 68(9): 098801. doi: 10.7498/aps.68.20190159
    [10] Wang Qi-Yu, Wang Shuo, Zhou Ge, Zhang Jie-Nan, Zheng Jie-Yun, Yu Xi-Qian, Li Hong. Progress on the failure analysis of lithium battery. Acta Physica Sinica, 2018, 67(12): 128501. doi: 10.7498/aps.67.20180757
    [11] Pang Hui. An extended single particle model-based parameter identification scheme for lithium-ion cells. Acta Physica Sinica, 2018, 67(5): 058201. doi: 10.7498/aps.67.20172171
    [12] Pang Hui. Multi-scale modeling and its simplification method of Li-ion battery based on electrochemical model. Acta Physica Sinica, 2017, 66(23): 238801. doi: 10.7498/aps.66.238801
    [13] Zhu Da-Wei, Tu Li-Lan. Adaptive synchronization and parameter identification for Lorenz chaotic system with stochastic perturbations. Acta Physica Sinica, 2013, 62(5): 050508. doi: 10.7498/aps.62.050508
    [14] Li Xiu-Chun, Gu Jian-Hua, Wang Yun-Lan, Zhao Tian-Hai. Observer synchronization method for a class of perturbed chaotic systems with unknown parameters. Acta Physica Sinica, 2011, 60(3): 030505. doi: 10.7498/aps.60.030505
    [15] Hou Xian-Hua, Yu Hong-Wen, Hu She-Jun. preparation and properties of Sn-Al thin-film electrode material for lithium ion batteries. Acta Physica Sinica, 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [16] Ma Jun, Su Wen-Tao, Gao Jia-Zhen. Optimization of self-adaptive synchronization and parameters estimation in chaotic Hindmarsh-Rose neuron model. Acta Physica Sinica, 2010, 59(3): 1554-1561. doi: 10.7498/aps.59.1554
    [17] Yan Hui, Jiang Hong-Yuan, Liu Wen-Jian, Ulannov A. M.. Identification of parameters for metal rubber isolator with hysteretic nonlinearity characteristics. Acta Physica Sinica, 2009, 58(8): 5238-5243. doi: 10.7498/aps.58.5238
    [18] Wang Xing-Yuan, Zhao Qun. Adaptive projective synchronization and parameter identification of a class of delayed chaotic neural networks. Acta Physica Sinica, 2008, 57(5): 2812-2818. doi: 10.7498/aps.57.2812
    [19] Lü Ling, Guo Zhi-An, Li Yan, Xia Xiao-Lan. Parameter identification and backstepping design of synchronization controller for uncertain chaotic system. Acta Physica Sinica, 2007, 56(1): 95-100. doi: 10.7498/aps.56.95
    [20] Li Guo-Hui, Xu De-Ming, Zhou Shi-Ping. A parameter-modulated method for chaotic digital communication based on state observers. Acta Physica Sinica, 2004, 53(3): 706-709. doi: 10.7498/aps.53.706
Metrics
  • Abstract views:  7125
  • PDF Downloads:  126
  • Cited By: 0
Publishing process
  • Received Date:  26 July 2018
  • Accepted Date:  26 August 2018
  • Published Online:  20 November 2019

/

返回文章
返回