Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An efficient Monte Carlo simulation method for thermal radiation transport

Xu Yu-Pei Li Shu

Citation:

An efficient Monte Carlo simulation method for thermal radiation transport

Xu Yu-Pei, Li Shu
PDF
HTML
Get Citation
  • Thermal radiation transfer in material and the interaction between radiative photon and material are important research projects of the inertial confinement fusion, and Monte Carlo method is one of the important researching methods. Based on the implicit integral-differential transport equation, traditional implicit Monte Carlo method can accurately simulate the thermal radiation transport in material. However, the implicit Monte Carlo method would take quite a long computational time when the opacity is increased because scattering events are dominant in particles’ histories, thus reducing the simulation efficiency. In this paper, based on discrete diffusion Monte Carlo method, i.e. a radiation transport code, the discrete diffusion Monte Carlo radiation transport simulation, is developed. The code increases the efficiency of thermal radiation simulations in a high opacity range, but it can yield insufficiently accurate results in a low opacity range. There exist low opacity material and high opacity material in the inertial confinement fusion. In this work, investigated are several numerical techniques that can improve the utility and accuracy of discrete diffusion Monte Carlo for grey thermal radiation simulation. First, the discrete diffusion Monte Carlo method and implicit Monte Carlo method are combined. Second, a new method of treating the interface between the diffusive region and the transport region is proposed. Finally, a hybrid radiative transfer program is developed. In order to verify the hybrid radiative transfer program and the new interface method, a series of numerical experiments for typical thermal radiation transport problem is conducted. In these problems, materials with different opacities are tested. Then the simulation efficiencies and curves of temperature, obtained by the two Monte Carlo methods, are analyzed. According to the simulation results, the program can not only accurately simulate the radiation transport in material with high opacity, but also remarkably increase the simulation efficiency. This is because many implicit Monte Carlo steps are substituted by one diffusive step and the details in the diffusive step are ignored. Also, the propagation of thermal radiation depicted with figures and tables are consistent with the radiation transport theory. In addition, the results from the hybrid Monte Carlo method reach the same accuracy as that from the implicit Monte Carlo method, and the simulation efficiency is remarkably increased.
      Corresponding author: Li Shu, li_shu@iapcm.ac.cn
    • Funds: Project supported by the Yu Min Foundation of China Academy of Engineering Physics (Grant No. FZ025) and the National Natural Science Foundation of China (Grant Nos. 11775033, 11775030)
    [1]

    彭惠民 2008 等离子体中辐射输运和辐射流体力学 (北京: 国防工业出版社) 第38页

    Peng H M 2008 Radiation Transport and Radiation Hydrodynamics in Plasmas (Beijing: National Defense Industry Press) p38 (in Chinese)

    [2]

    Hammersly J M, Handscomb D C 1964 Monte Carlo Method (New York: John Wiley & Sons Press) p76

    [3]

    裴鹿成, 张孝泽 1980 蒙特卡罗方法及其在粒子输运问题中的应用(北京: 科学出版社) 第18页

    Pei L C, Zhang X Z 1980 Monte Carlo Method and Application in Particle Transportation (Beijing: Science Press) p18 (in Chinese)

    [4]

    Fleck J A 1963 Computational Method in the Physical Sciences (New York: McGraw-Hill) p43

    [5]

    Campbell P M, Nelson R G 1964 Livermore, Calif: Lawrence Radiation Laboratory Report UCRL-7838

    [6]

    Fleck J A, Cummings J D 1971 J. Comput. Phys. 8 313Google Scholar

    [7]

    Fleck J A, Canfield E H 1984 J. Comput. Phys. 54 508Google Scholar

    [8]

    Giorla J, Sentis R 1987 J. Comput. Phys. 70 145Google Scholar

    [9]

    Urbatsch T J, Morel J E, Gulick J C 1999 Proceedings of the ANS conference on Mathematics and Computation, Reactor Physics, and Environmental Analysis in Nuclear Applications Madrid, Spain, September 27–30, 1999 p262

    [10]

    Evans T M, Urbatsch T J, Lichtenstein H 2000 Proceedings of the Monte Carlo 2000 International Conference Lisbon, Portugal, October 23–26, 2000

    [11]

    Gentile N A 2001 J. Comput. Phys. 172 543Google Scholar

    [12]

    Densmore J D, Urbatsch T J, Evans T M, Buksas M W 2005 American Nuclear Society Topical Meeting in Mathematics and Computations Avignon, France, September 12–15, 2005

    [13]

    Densmore J D, Urbatsch T J, Evans T M, Buksas M W 2007 J. Comput. Phys. 222 485Google Scholar

    [14]

    Cleveland M A, Gentile N, Palmer T S 2010 J. Comput. Phys. 229 5707Google Scholar

    [15]

    Densmore J D, Thompson K G, Urbatsch T J 2012 J. Comput. Phys. 231 6924Google Scholar

    [16]

    李树, 李刚, 田东风, 邓力 2013 物理学报 62 249501Google Scholar

    Li S, Li G, Tian D F, Deng L 2013 Acta Phys. Sin. 62 249501Google Scholar

    [17]

    李树, 陈耀华, 姬志成, 章明宇, 任国利, 霍文义, 闫威华, 韩小英, 李志超, 刘杰, 蓝可 2018 物理学报 67 025202Google Scholar

    Li S, Chen Y H, Ji Z C, Zhang M Y, Ren G L, Huo W Y, Yan W H, Han X Y, Li Z C, Liu J, Lan K 2018 Acta Phys. Sin. 67 025202Google Scholar

    [18]

    Mihalas D, Mihalas B W, Fu A, Arnett W D 1986 Phys. Today 39 90Google Scholar

    [19]

    谢仲生 2004 核反应堆物理分析 (西安: 西安交通大学出版社) 第62页

    Xie Z S 2004 Analysis of Nuclear Reactor Physics (Xi’an: Xi’an Jiaotong University Press) p62 (in Chinese)

    [20]

    Szilard R H, Pomraning G C 1992 Nucl. Sci. Eng. 112 256Google Scholar

    [21]

    Habetle G J, Matkowsky B J 1975 J. Math. Phys. 16 846Google Scholar

    [22]

    Densmore J D, Davidson G, Carrington D B 2006 Ann. Nucl. Energy 33 583Google Scholar

    [23]

    Cashwell E D, Everett C J 1959 A Practical Manual on the Monte Carlo Method for Random Walk Problem (London: Pergamon Press) p19

  • 图 1  不同时刻的物质温度空间分布比较(σ0 = 500)

    Figure 1.  Material temperature in different moments (σ0 = 500).

    图 2  不同时刻的辐射温度空间分布比较(σ0 = 500)

    Figure 2.  Radiative temperature in different moments (σ0 = 500).

    图 3  不同时刻的物质温度空间分布比较(σ0 = 500)

    Figure 3.  Material temperature in different moments (σ0 = 500).

    图 4  不同时刻的辐射温度空间分布比较(σ0 = 500)

    Figure 4.  Radiative temperature in different moments (σ0 = 500).

    图 5  不同时刻的物质温度空间分布比较(σ0 = 500, Np = 500000)

    Figure 5.  Material temperature in different moments (σ0 = 500, Np = 500000).

    图 6  不同时刻的辐射温度空间分布比较(σ0 = 500, Np = 500000)

    Figure 6.  Radiative temperature in different moments (σ0 = 500, Np = 500000).

    图 7  不同时刻介质中物质温度的空间分布比较

    Figure 7.  Material temperature in different moments.

    表 1  不同σ0取值下IMC与DDMC方法的模拟时间对比

    Table 1.  Simulation time of IMC method and DDMC method in different initial cross sections.

    σ0/keV3·cm–1IMC time/sDDMC time/sSpeed up
    200330.4143.32.3
    500505.8139.93.6
    1000894.2142.16.3
    20001158.6142.28.1
    DownLoad: CSV

    表 2  不同σ0取值下, IMC与DDMC方法的模拟时间比较

    Table 2.  Simulation time of IMC method and DDMC method in different initial cross sections.

    σ0/keV3·cm–1IMC time/sDDMC time/sSpeed up
    2001184.4298.24.0
    5002357.6291.88.1
    10004348.7288.615.1
    20008406.4287.729.2
    DownLoad: CSV
  • [1]

    彭惠民 2008 等离子体中辐射输运和辐射流体力学 (北京: 国防工业出版社) 第38页

    Peng H M 2008 Radiation Transport and Radiation Hydrodynamics in Plasmas (Beijing: National Defense Industry Press) p38 (in Chinese)

    [2]

    Hammersly J M, Handscomb D C 1964 Monte Carlo Method (New York: John Wiley & Sons Press) p76

    [3]

    裴鹿成, 张孝泽 1980 蒙特卡罗方法及其在粒子输运问题中的应用(北京: 科学出版社) 第18页

    Pei L C, Zhang X Z 1980 Monte Carlo Method and Application in Particle Transportation (Beijing: Science Press) p18 (in Chinese)

    [4]

    Fleck J A 1963 Computational Method in the Physical Sciences (New York: McGraw-Hill) p43

    [5]

    Campbell P M, Nelson R G 1964 Livermore, Calif: Lawrence Radiation Laboratory Report UCRL-7838

    [6]

    Fleck J A, Cummings J D 1971 J. Comput. Phys. 8 313Google Scholar

    [7]

    Fleck J A, Canfield E H 1984 J. Comput. Phys. 54 508Google Scholar

    [8]

    Giorla J, Sentis R 1987 J. Comput. Phys. 70 145Google Scholar

    [9]

    Urbatsch T J, Morel J E, Gulick J C 1999 Proceedings of the ANS conference on Mathematics and Computation, Reactor Physics, and Environmental Analysis in Nuclear Applications Madrid, Spain, September 27–30, 1999 p262

    [10]

    Evans T M, Urbatsch T J, Lichtenstein H 2000 Proceedings of the Monte Carlo 2000 International Conference Lisbon, Portugal, October 23–26, 2000

    [11]

    Gentile N A 2001 J. Comput. Phys. 172 543Google Scholar

    [12]

    Densmore J D, Urbatsch T J, Evans T M, Buksas M W 2005 American Nuclear Society Topical Meeting in Mathematics and Computations Avignon, France, September 12–15, 2005

    [13]

    Densmore J D, Urbatsch T J, Evans T M, Buksas M W 2007 J. Comput. Phys. 222 485Google Scholar

    [14]

    Cleveland M A, Gentile N, Palmer T S 2010 J. Comput. Phys. 229 5707Google Scholar

    [15]

    Densmore J D, Thompson K G, Urbatsch T J 2012 J. Comput. Phys. 231 6924Google Scholar

    [16]

    李树, 李刚, 田东风, 邓力 2013 物理学报 62 249501Google Scholar

    Li S, Li G, Tian D F, Deng L 2013 Acta Phys. Sin. 62 249501Google Scholar

    [17]

    李树, 陈耀华, 姬志成, 章明宇, 任国利, 霍文义, 闫威华, 韩小英, 李志超, 刘杰, 蓝可 2018 物理学报 67 025202Google Scholar

    Li S, Chen Y H, Ji Z C, Zhang M Y, Ren G L, Huo W Y, Yan W H, Han X Y, Li Z C, Liu J, Lan K 2018 Acta Phys. Sin. 67 025202Google Scholar

    [18]

    Mihalas D, Mihalas B W, Fu A, Arnett W D 1986 Phys. Today 39 90Google Scholar

    [19]

    谢仲生 2004 核反应堆物理分析 (西安: 西安交通大学出版社) 第62页

    Xie Z S 2004 Analysis of Nuclear Reactor Physics (Xi’an: Xi’an Jiaotong University Press) p62 (in Chinese)

    [20]

    Szilard R H, Pomraning G C 1992 Nucl. Sci. Eng. 112 256Google Scholar

    [21]

    Habetle G J, Matkowsky B J 1975 J. Math. Phys. 16 846Google Scholar

    [22]

    Densmore J D, Davidson G, Carrington D B 2006 Ann. Nucl. Energy 33 583Google Scholar

    [23]

    Cashwell E D, Everett C J 1959 A Practical Manual on the Monte Carlo Method for Random Walk Problem (London: Pergamon Press) p19

  • [1] Li Shu, Wang Yang, Ji Zhi-Cheng, Lan Ke. Global variance reduction method for Monte Carlo simulation of thermal radiation transport. Acta Physica Sinica, 2023, 72(13): 139501. doi: 10.7498/aps.72.20230218
    [2] Shangguan Dan-Hua, Yan Wei-Hua, Wei Jun-Xia, Gao Zhi-Ming, Chen Yi-Bing, Ji Zhi-Cheng. Efficient Monte Carlo algorithm of time-dependent particle transport problem in multi-physics coupling calculation. Acta Physica Sinica, 2022, 71(9): 090501. doi: 10.7498/aps.71.20211474
    [3] Xu Yu-Pei, Li Shu. Modification of method of sampling radiation source particle in spherical geometry. Acta Physica Sinica, 2020, 69(11): 119501. doi: 10.7498/aps.69.20200024
    [4] Li Yuan, Shi Ai-Hong, Chen Guo-Yu, Gu Bing-Dong. Formation of step bunching on 4H-SiC (0001) surfaces based on kinetic Monte Carlo method. Acta Physica Sinica, 2019, 68(7): 078101. doi: 10.7498/aps.68.20182067
    [5] Chen Zhong, Zhao Zi-Jia, Lü Zhong-Liang, Li Jun-Han, Pan Dong-Mei. Numerical simulation of deuterium-tritium fusion reaction rate in laser plasma based on Monte Carlo-discrete ordinate method. Acta Physica Sinica, 2019, 68(21): 215201. doi: 10.7498/aps.68.20190440
    [6] Li Shu, Chen Yao-Hua, Ji Zhi-Cheng, Zhang Ming-Yu, Ren Guo-Li, Huo Wen-Yi, Yan Wei-Hua, Han Xiao-Ying, Li Zhi-Chao, Liu Jie, Lan Ke. Three-dimensional simulations and analyses of spherical hohlraum experiments on SGⅢ laser facility. Acta Physica Sinica, 2018, 67(2): 025202. doi: 10.7498/aps.67.20170521
    [7] Sun An-Bang, Li Han-Wei, Xu Peng, Zhang Guan-Jun. Monte Carlo simulations of electron transport coefficients in low temperature streamer discharge plasmas. Acta Physica Sinica, 2017, 66(19): 195101. doi: 10.7498/aps.66.195101
    [8] Li Shu, Lan Ke, Lai Dong-Xian, Liu Jie. Monte Carlo simulation of the radiation transport of spherical holhraum. Acta Physica Sinica, 2015, 64(14): 145203. doi: 10.7498/aps.64.145203
    [9] Lin Shu, Yan Yang-Jiao, Li Yong-Dong, Liu Chun-Liang. Monte-Carlo method of computing multipactor threshold in microwave devices. Acta Physica Sinica, 2014, 63(14): 147902. doi: 10.7498/aps.63.147902
    [10] Huang Jian-Wei, Wang Nai-Yan. Efficiency calibration for a NaI scintillation detector based on Monte-Carlo process and preliminary measurements of bremsstrahlung. Acta Physica Sinica, 2014, 63(18): 180702. doi: 10.7498/aps.63.180702
    [11] Li Shu, Deng Li, Tian Dong-Feng, Li Gang. A new sampling method based on radiation energy density for location of radiative source particles. Acta Physica Sinica, 2014, 63(23): 239501. doi: 10.7498/aps.63.239501
    [12] Li Shu, Li Gang, Tian Dong-Feng, Deng Li. An implicit Monte Carlo method for thermal radiation transport. Acta Physica Sinica, 2013, 62(24): 249501. doi: 10.7498/aps.62.249501
    [13] Li Peng, Xu Zhou, Li Ming, Yang Xing-Fan. A Monte Carlo simulation of secondary electron transport in diamond. Acta Physica Sinica, 2012, 61(7): 078503. doi: 10.7498/aps.61.078503
    [14] Zhang Bao-Wu, Zhang Ping-Ping, Ma Yan, Li Tong-Bao. Simulations of one-dimensional transverse laser cooling of Cr atomic beam with Monte Carlo method. Acta Physica Sinica, 2011, 60(11): 113701. doi: 10.7498/aps.60.113701
    [15] Li Gang, Deng Li, Mo Ze-Yao, Li Shu. Adaptive source biasing sampling for time-dependent radiation transport problems. Acta Physica Sinica, 2011, 60(2): 022401. doi: 10.7498/aps.60.022401
    [16] Ju Zhi-Ping, Cao Wu-Fei, Liu Xiao-Wei. Study of proton beam spreading for a solid beam stopper double scattering method using Monte Carlo simulation. Acta Physica Sinica, 2010, 59(1): 199-202. doi: 10.7498/aps.59.199
    [17] He Qing-Fang, Xu Zheng, Liu De-Ang, Xu Xu-Rong. Monte Carlo simulation of the effect of impact ionization in thin-film electroluminescent devices. Acta Physica Sinica, 2006, 55(4): 1997-2002. doi: 10.7498/aps.55.1997
    [18] Hao Fan-Hua, Hu Guang-Chun, Liu Su-Ping, Gong Jian, Xiang Yong-Chun, Huang Rui-Liang, Shi Xue-Ming, Wu Jun. Monte-Carlo method in calculating the γ spectrum of plutonium volume source. Acta Physica Sinica, 2005, 54(8): 3523-3529. doi: 10.7498/aps.54.3523
    [19] Wang Jian-Hua, Jin Chuan-En. Application of Monte Carlo simulation to the research of ions transport plasma sheaths of glow discharge. Acta Physica Sinica, 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
    [20] WANG XI-DE, PAN ZHENG-YING, HUANG FA-YANG, XIA RONG. THE MONTE-CARLO SIMULATION OF THE FLUORESCENCE ENHANCING EFFECT IN PIXE. Acta Physica Sinica, 1989, 38(5): 776-783. doi: 10.7498/aps.38.776
Metrics
  • Abstract views:  9388
  • PDF Downloads:  134
  • Cited By: 0
Publishing process
  • Received Date:  31 August 2019
  • Accepted Date:  30 October 2019
  • Published Online:  20 January 2020

/

返回文章
返回