Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electronic structure and photocatalytic properties of H, F modified two-dimensional GeTe

Fang Wen-Yu Zhang Peng-Cheng Zhao Jun Kang Wen-Bin

Citation:

Electronic structure and photocatalytic properties of H, F modified two-dimensional GeTe

Fang Wen-Yu, Zhang Peng-Cheng, Zhao Jun, Kang Wen-Bin
PDF
HTML
Get Citation
  • Using the first principle calculation based on the density functional theory, we have systematically investigated the structure stability, electronic structure and photocatalytic properties of two-dimensional single-layered GeTe crystal structure modified by H and F. The results show that the lattice constant, bond angle and bond length of GeTe increase after being modified. The stability analysis shows that all the materials have excellent dynamical, mechanical, and thermal stabilities. The electronic structure analysis shows that the two-dimensional GeTe is an indirect bandgap semiconductor with an energy gap of 1.797 eV, and its energy band is mainly composed of Ge-4p and Te-5p, while it is converted into a direct bandgap semiconductor by H or F modification and H-F co-modification (F and Ge on one side, H and Te on the other), and their corresponding energy gaps are reduced to 1.847 eV (fH-GeTe), 0.113 eV (fF-GeTe) and 1.613 eV (hF-GeTe-hH). However, hH-GeTe-hF is still an indirect band gap semiconductor, and its energy gap is reduced to 0.706 eV. The results of the density of states show that part of the Ge-4p and Te-5p electrons are transferred to a deeper level due to the adsorption of H or F atoms, resulting in a strong orbital hybridization between them and the adsorbed atoms. The effective mass shows that the effective mass of H or F modified and H-F co-modified GeTe (F and Ge on one side, H and Te on the other) decrease, and their carrier mobilities increase. The carrier recombination rates of all modified GeTe materials are lower than that of the intrinsic GeTe, so the semiconductor will be more durable. The electron density difference shows that due to the electronegativities of atoms being different from each other, when H or F is used to modify GeTe, some electrons transfer to H and F atoms, resulting in the weakening of covalent bond between Ge and Te atoms and the enhancement of ion bond. The results of band-edge potential analysis show that GeTe can produce hydrogen and oxygen by photolysis of water. However, the valence band edge potential of the modified GeTe decreases significantly, and its oxidation ability increases considerably, the photocatalytic water can produce O2, H2, O3, OH·, etc. Optical properties show that the modified GeTe can enhance the absorption of visible and ultraviolet spectrum, which indicates that they have great application prospects in the field of photocatalysis.
      Corresponding author: Kang Wen-Bin, wbkang@hbmu.edu.cn
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Bolar S, Shit S, Kumar J S, Murmu N C, Genesh R S, Inokawa H, Kuila T 2019 Appl. Catal., B-environ. 254 432Google Scholar

    [3]

    Hu W, Yang J L 2017 J. Mater. Chem. C 5 12289Google Scholar

    [4]

    Yao L H, Cao M S, Yang H J, Liu X J, Fang X Y, Yuan J 2014 Comput. Mater. Sci. 85 179Google Scholar

    [5]

    Molle A, Grazianetti C, Tao L, Taneja D, Alam M H, Akinwande D 2018 Chem. Soc. Rev. 47 6370Google Scholar

    [6]

    Cao M S, Wang X X, Zhang M, Shu J C, Cao W Q, Yang H J, Fang X Y, Yuan J 2019 Adv. Funct. Mater. 29 1807398Google Scholar

    [7]

    Wang L J, Wang W Z, Chen Y L, Yao L Z, Zhao X, Shi H L, Cao M S, Liang Y J 2018 Acs. Appl. Mater. Interfaces 10 11652Google Scholar

    [8]

    Chen P F, Li N, Chen X Z, Ong W J, Zhao X J 2018 2D Mater. 5 014002

    [9]

    Zhao J, Li Y L, Ma J 2016 Nanoscale 8 9567

    [10]

    Chen Y L, Wang L J, Wang W Z, Cao M S 2017 Appl. Catal. B-Environ. 209 110Google Scholar

    [11]

    Wong S L, Khoo K H, Quek S Y, Wee A T S 2015 J. Phys. Chem. C 119 29193Google Scholar

    [12]

    Zeng Q S, Sun B, Du K Z, Zhao W Y, Yu P, Zhu C, Xia J, Chen Y, Cao X, Yan Q Y, Shen Z X, Yu T, Long Y, Koh Y K, Liu Z 2019 2D Mater. 6 045009

    [13]

    Zhang S L, Yan Z, Li Y F, Chen Z F, Zeng H B 2015 Angew. Chem.-Int. Edit. 54 3112Google Scholar

    [14]

    Fonseca J J, TonGey S, Topsakal M, Chew A R, Lin A J, Ko C, Luce A V, Salleo A, Wu J Q, Dubon O D 2016 Adv. Mater. 28 6465Google Scholar

    [15]

    Fedorenko Y G 2015 Semiconductors 49 1640Google Scholar

    [16]

    Gelca A C, Sava F, Simandan I D, Bucur C, Dumitru V, Porosnicu C, Mihai C, Velea A 2016 J. Non-Cryst. Solids 499 1

    [17]

    Qiao M, Chen Y L, Wang Y, Li Y F 2018 J. Mater. Chem. A 6 4119Google Scholar

    [18]

    Singh A K, Hennig R G 2014 Appl. Phys. Lett. 105 042103Google Scholar

    [19]

    Wan W H, Liu C, Xiao W D, Yao Y G 2017 Appl. Phys. Lett. 111 132904Google Scholar

    [20]

    Zhang P P, Zhao F L, Long P, Wang Y, Yue Y C, Liu X Y, Feng Y Y, Li R J, Hu W P, Li Y, Feng W 2018 Nanoscale 10 34Google Scholar

    [21]

    Tang W C, Sun M L, Ren Q Q, Wang S K, Yu J 2016 Appl. Surf. Sci. 376 286Google Scholar

    [22]

    Zhang D B, Zhou Z P, Wang H Y, Yang Z X, Liu C 2018 Nanoscale Res. Lett. 13 400Google Scholar

    [23]

    Yuan J H, Xie Q X, Yu N N, Wang J F 2017 Appl. Surf. Sci. 394 625Google Scholar

    [24]

    SeGell M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.-Condes. Matter 14 2717Google Scholar

    [25]

    Xie Q X, Yuan J H, Yu N N, Wang L S, Wang J F 2017 Comput. Mater. Sci. 135 160Google Scholar

    [26]

    Yuan J H, Yu N N, Xue K H, Miao X S 2017 RSC Adv. 7 8654Google Scholar

    [27]

    Zhang J F, Wageh S, Al-Ghamdi A, Yu J G 2016 Appl. Catal. B-Environ. 192 101Google Scholar

    [28]

    Tian Y L, Hua H L, Yue W W, Chen M N, Hu G C, Ren J F, Yuan X B 2017 Mod. Phys. Lett. B 31 1750335Google Scholar

    [29]

    王胜楠, 毛启楠, 袁倩敏, 李鹤, 季振国 2016 材料科学与工程学报 34 702

    Wang S N, Mao Q N, Yuan Q M, Li H, Ji Z G 2016 Journal of Materials Science and Engineering 34 702

    [30]

    Yu W L, Zhang J F, Peng T Y 2016 Appl. Catal. B-Environ. 181 220Google Scholar

    [31]

    Yu N N, Yuan J H, Li K X 2018 Appl. Surf. Sci. 427 0169Google Scholar

    [32]

    Goclon J, Winkler K 2018 Appl. Surf. Sci. 462 134Google Scholar

    [33]

    Zhou Y H, Peng Z B, Chen Y D, Luo K, Zhang J, Du S Y 2019 Comput. Mater. Sci. 168 137Google Scholar

  • 图 1  优化后的晶胞模型 (a) GeTe侧视图; (b) fH-GeTe俯视图; (c) fH-GeTe侧视图; (d) hH-GeTe-hF侧视图; (e) hF-GeTe-hH侧视图; (f) K点路径

    Figure 1.  The optimized geometric structures: (a) side view of GeTe; (b) top view of fH-GeTe; (c) side view of fH-GeTe; (d) side view of hH-GeTe-hF; (e) side view of hF-GeTe-hH; (f) K point path.

    图 2  声子谱 (a) GeTe; (b) fH-GeTe; (c) fF-GeTe; (d) hH-GeTe-hF; (e) hF-GeTe-hH

    Figure 2.  Phonon dispersion: (a) GeTe; (b) fH-GeTe; (c) fF-GeTe; (d) hH-GeTe-hF; (e) hF-GeTe-hH.

    图 3  分子动力学模拟计算的能量随时间的变化, 插图表示加热到500 K温度下最后的结构图 (a) GeTe; (b) fH-GeTe; (c) fF-GeTe; (d) hH-GeTe-hF; (e) hF-GeTe-hH

    Figure 3.  Variation of the total energy in the molecular dynamics simulation at 500 K for: (a) GeTe; (b) fH-GeTe; (c) fF-GeTe; (d) hH-GeTe-hF; (e) hF-GeTe-hH, during a timescale of 2.5 ps. The insets are the top (left panel) and side (right panel) views of the atomic structure snapshots taken from the molecular dynamics simulation.

    图 4  能带图和态密度 (a) GeTe; (b) fH-GeTe; (c) fF-GeTe; (d) hH-GeTe-hF; (e) hF-GeTe-hH

    Figure 4.  Band structure and density of states: (a) GeTe; (b) fH-GeTe; (c) fF-GeTe; (d) hH-GeTe-hF; (e) hF-GeTe-hH.

    图 5  $\langle 0, 0, 1 \rangle$截面差分电荷密度图 (a) GeTe; (b) fH-GeTe; (c) fF-GeTe; (d) hH-GeTe-hF; (e) hF-GeTe-hH

    Figure 5.  Electron density difference $\langle 0, 0, 1 \rangle$: (a) GeTe; (b) fH-GeTe; (c) fF-GeTe; (d) hH-GeTe-hF; (e) hF-GeTe-hH.

    图 6  半导体的导带与价带的带边电势示意图

    Figure 6.  Reduction and oxidation potentials of CB and VB edges of all chemically decorated GeTe.

    图 7  半导体的吸收系数

    Figure 7.  Absorption spectra of all chemically decorated GeTe.

    表 1  晶体的结构参数及吸附能

    Table 1.  Structural parameters for all chemically decorated GeTe.

    Structure(a/b)/Åθ/(°)ll1l2σEf/eV
    GeTe3.9591.222.761.56
    fH-GeTe5.09119.922.941.601.69–0.08–5.80
    fF-GeTe4.1893.082.881.792.041.58–7.45
    hH-GeTe-hF4.0292.042.971.592.081.56–5.79
    hF-GeTe-hH5.21119.993.011.811.69–0.03–7.74
    DownLoad: CSV

    表 2  半导体的载流子有效质量

    Table 2.  The effective mass for all chemically decorated GeTe.

    Effective massGeTefH-GeTefF-GeTehH-GeTe-hFhF-GeTe-hH
    $ m_{\rm h}^*/m_0 $0.540.240.231.500.30
    $ m_{\rm e}^*/m_0 $0.520.390.270.910.49
    D1.041.631.171.651.63
    DownLoad: CSV

    表 3  半导体的导带和价带的带边电势

    Table 3.  Reduction and oxidation potentials of CB and VB edges of all chemically decorated GeTe.

    StructureGeTefH-GeTefF-GeTehH-GeTe-hFhF-GeTe-hH
    $ \chi $5.036.017.236.596.59
    CB/eV–0.370.762.681.741.28
    VB/eV1.422.252.792.442.90
    DownLoad: CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Bolar S, Shit S, Kumar J S, Murmu N C, Genesh R S, Inokawa H, Kuila T 2019 Appl. Catal., B-environ. 254 432Google Scholar

    [3]

    Hu W, Yang J L 2017 J. Mater. Chem. C 5 12289Google Scholar

    [4]

    Yao L H, Cao M S, Yang H J, Liu X J, Fang X Y, Yuan J 2014 Comput. Mater. Sci. 85 179Google Scholar

    [5]

    Molle A, Grazianetti C, Tao L, Taneja D, Alam M H, Akinwande D 2018 Chem. Soc. Rev. 47 6370Google Scholar

    [6]

    Cao M S, Wang X X, Zhang M, Shu J C, Cao W Q, Yang H J, Fang X Y, Yuan J 2019 Adv. Funct. Mater. 29 1807398Google Scholar

    [7]

    Wang L J, Wang W Z, Chen Y L, Yao L Z, Zhao X, Shi H L, Cao M S, Liang Y J 2018 Acs. Appl. Mater. Interfaces 10 11652Google Scholar

    [8]

    Chen P F, Li N, Chen X Z, Ong W J, Zhao X J 2018 2D Mater. 5 014002

    [9]

    Zhao J, Li Y L, Ma J 2016 Nanoscale 8 9567

    [10]

    Chen Y L, Wang L J, Wang W Z, Cao M S 2017 Appl. Catal. B-Environ. 209 110Google Scholar

    [11]

    Wong S L, Khoo K H, Quek S Y, Wee A T S 2015 J. Phys. Chem. C 119 29193Google Scholar

    [12]

    Zeng Q S, Sun B, Du K Z, Zhao W Y, Yu P, Zhu C, Xia J, Chen Y, Cao X, Yan Q Y, Shen Z X, Yu T, Long Y, Koh Y K, Liu Z 2019 2D Mater. 6 045009

    [13]

    Zhang S L, Yan Z, Li Y F, Chen Z F, Zeng H B 2015 Angew. Chem.-Int. Edit. 54 3112Google Scholar

    [14]

    Fonseca J J, TonGey S, Topsakal M, Chew A R, Lin A J, Ko C, Luce A V, Salleo A, Wu J Q, Dubon O D 2016 Adv. Mater. 28 6465Google Scholar

    [15]

    Fedorenko Y G 2015 Semiconductors 49 1640Google Scholar

    [16]

    Gelca A C, Sava F, Simandan I D, Bucur C, Dumitru V, Porosnicu C, Mihai C, Velea A 2016 J. Non-Cryst. Solids 499 1

    [17]

    Qiao M, Chen Y L, Wang Y, Li Y F 2018 J. Mater. Chem. A 6 4119Google Scholar

    [18]

    Singh A K, Hennig R G 2014 Appl. Phys. Lett. 105 042103Google Scholar

    [19]

    Wan W H, Liu C, Xiao W D, Yao Y G 2017 Appl. Phys. Lett. 111 132904Google Scholar

    [20]

    Zhang P P, Zhao F L, Long P, Wang Y, Yue Y C, Liu X Y, Feng Y Y, Li R J, Hu W P, Li Y, Feng W 2018 Nanoscale 10 34Google Scholar

    [21]

    Tang W C, Sun M L, Ren Q Q, Wang S K, Yu J 2016 Appl. Surf. Sci. 376 286Google Scholar

    [22]

    Zhang D B, Zhou Z P, Wang H Y, Yang Z X, Liu C 2018 Nanoscale Res. Lett. 13 400Google Scholar

    [23]

    Yuan J H, Xie Q X, Yu N N, Wang J F 2017 Appl. Surf. Sci. 394 625Google Scholar

    [24]

    SeGell M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.-Condes. Matter 14 2717Google Scholar

    [25]

    Xie Q X, Yuan J H, Yu N N, Wang L S, Wang J F 2017 Comput. Mater. Sci. 135 160Google Scholar

    [26]

    Yuan J H, Yu N N, Xue K H, Miao X S 2017 RSC Adv. 7 8654Google Scholar

    [27]

    Zhang J F, Wageh S, Al-Ghamdi A, Yu J G 2016 Appl. Catal. B-Environ. 192 101Google Scholar

    [28]

    Tian Y L, Hua H L, Yue W W, Chen M N, Hu G C, Ren J F, Yuan X B 2017 Mod. Phys. Lett. B 31 1750335Google Scholar

    [29]

    王胜楠, 毛启楠, 袁倩敏, 李鹤, 季振国 2016 材料科学与工程学报 34 702

    Wang S N, Mao Q N, Yuan Q M, Li H, Ji Z G 2016 Journal of Materials Science and Engineering 34 702

    [30]

    Yu W L, Zhang J F, Peng T Y 2016 Appl. Catal. B-Environ. 181 220Google Scholar

    [31]

    Yu N N, Yuan J H, Li K X 2018 Appl. Surf. Sci. 427 0169Google Scholar

    [32]

    Goclon J, Winkler K 2018 Appl. Surf. Sci. 462 134Google Scholar

    [33]

    Zhou Y H, Peng Z B, Chen Y D, Luo K, Zhang J, Du S Y 2019 Comput. Mater. Sci. 168 137Google Scholar

  • [1] Song Rui, Wang Bi-Li, Feng Kai, Yao Jia, Li Xia. Effect of stress regulation on electronic structure and optical properties of TiOCl2 monolayer. Acta Physica Sinica, 2022, 71(7): 077101. doi: 10.7498/aps.71.20212023
    [2] First principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211631
    [3] Xiong Zi-Qian, Zhang Peng-Cheng, Kang Wen-Bin, Fang Wen-Yu. Study on the electronic structure and photocatalytic properties of a novel monolayer TiO2. Acta Physica Sinica, 2020, 69(16): 166301. doi: 10.7498/aps.69.20200631
    [4] Liu Xiao-Wei, Zhang Ke-Ye. Effective-mass approach to controlling double-well dynamics of atomic Bose-Einstein condensates. Acta Physica Sinica, 2017, 66(16): 160301. doi: 10.7498/aps.66.160301
    [5] Xu Cong-Hui, Zhang Guo-Hua, Qian Zhi-Heng, Zhao Xue-Dan. Effective mass spectrum and dissipation power of granular material under the horizontal and vertical excitation. Acta Physica Sinica, 2016, 65(23): 234501. doi: 10.7498/aps.65.234501
    [6] Li Li-Ming, Ning Feng, Tang Li-Ming. First-principles study of effects of quantum confinement and strain on the electronic properties of GaSb nanowires. Acta Physica Sinica, 2015, 64(22): 227303. doi: 10.7498/aps.64.227303
    [7] Yu Tian, Zhang Guo-Hua, Sun Qi-Cheng, Zhao Xue-Dan, Ma Wen-Bo. Dynamic effective mass and power dissipation of the granular material under vertical vibration. Acta Physica Sinica, 2015, 64(4): 044501. doi: 10.7498/aps.64.044501
    [8] Lei Tian-Min, Wu Sheng-Bao, Zhang Yu-Ming, Guo Hui, Chen De-Lin, Zhang Zhi-Yong. Effects of La, Ce and Nd doping on the electronic structure of monolayer MoS2. Acta Physica Sinica, 2014, 63(6): 067301. doi: 10.7498/aps.63.067301
    [9] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [10] Qi Hong-Fei, Liu Da-Bo, Cheng Bo, Hao Wei-Chang, Wang Tian-Min. Ag antidot array modified TiO2 film and its photocatalysis performance. Acta Physica Sinica, 2012, 61(22): 228201. doi: 10.7498/aps.61.228201
    [11] Zhang Xue-Jun, Liu Qing-Ju, Deng Shu-Guang, Chen Juan, Gao Pan. Effects of Mn and N codoping on microstructure and performance of anatase TiO2. Acta Physica Sinica, 2011, 60(8): 087103. doi: 10.7498/aps.60.087103
    [12] Wang Yong-Long, Pan Hong-Zhe, Xu Ming, Chen Li, Sun Yuan-Yuan. Electronic structure and magnetism of single-layer trigonal graphene quantum dots with zigzag edges. Acta Physica Sinica, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [13] Zhao Qi-Di, Zhang Zhen-Hua. Electronic transport properties of single-walled carbon nanotubes under a low bias. Acta Physica Sinica, 2010, 59(11): 8098-8103. doi: 10.7498/aps.59.8098
    [14] Wu Hui-Ting, Wang Hai-Long, Jiang Li-Ming. Effect of different effective mass and electric field on the electronic structure in GaN/AlxGa1-xN spherical quantum dot. Acta Physica Sinica, 2009, 58(1): 465-470. doi: 10.7498/aps.58.465
    [15] Wang Chuan-Dao. Electronic structure in GaAs/AlxGa1-xAs spherical quantum dots. Acta Physica Sinica, 2008, 57(2): 1091-1096. doi: 10.7498/aps.57.1091
    [16] Zhao Zong-Yan, Liu Qing-Ju, Zhu Zhong-Qi, Zhang Jin. Effects of S doping on electronic structures and photocatalytic properties of anatase TiO2. Acta Physica Sinica, 2008, 57(6): 3760-3768. doi: 10.7498/aps.57.3760
    [17] Lu Guang-Cheng, Li Zeng-Hua, Zuo Wei, Luo Pei-Yan. Single nucleon potential and effective mass with ground state correlations in hot nuclear matter. Acta Physica Sinica, 2006, 55(1): 84-90. doi: 10.7498/aps.55.84
    [18] Eerdunchaolu, Li Shu-Shen, Xiao Jing-Lin. Effects of lattice vibration on the effective mass of quasi-two-dimensional strong-coupling polaron. Acta Physica Sinica, 2005, 54(9): 4285-4293. doi: 10.7498/aps.54.4285
    [19] Cai Chang-Ying, Ren Zhong-Zhou, Ju Guo-Xing. Analytical solutions of the three-dimensional Schr?dinger equation with an exponentially changing effective mass. Acta Physica Sinica, 2005, 54(6): 2528-2533. doi: 10.7498/aps.54.2528
    [20] Duan He, Chen Xiao-Shuang, Sun Li-Zhong, Zhou Xiao-Hao, Lu Wei. First-principle calculations of structural properties and effective-mass of zinc-blende ZnTe and CdTe. Acta Physica Sinica, 2005, 54(11): 5293-5300. doi: 10.7498/aps.54.5293
Metrics
  • Abstract views:  9497
  • PDF Downloads:  151
  • Cited By: 0
Publishing process
  • Received Date:  14 September 2019
  • Accepted Date:  12 December 2019
  • Published Online:  05 March 2020

/

返回文章
返回