-
Ag antidot arrays modified TiO2 films are obtained by PS colloidal crystal template technique and magnetron sputtering method, and the microstructure of Ag antidot array is modulated through controlling the sputtering power. And then, the structural and the photocatalysis performances of all samples are characterized by using scanning electron microscopy, X-ray diffraction, UV-Vis spectrophotometer, and four-point probe. The experimental results show that the microstructure of Ag antidot array significantly influences the photocatalysis performance of the sample. With the diameter of the antidot array decreasing, the photocatalysis performance of the sample is enhanced due to the increase of conducting ability. The photocatalysis performance is highest, when the diameter of the antidot array is 710 nm. Subsequently, with the diameter of the antidot array further decreasing, the photocatalysis performance decreases to a certain extent, which results from the increases of the carrier loss and the light shading area. The photocatalysis performance of Ag antidot array modified TiO2 film is superior to that of TiO2 film. This is attributed to the fact that the Ag antidot array could effectively promote the separation of surface photoinduced charge carrier of TiO2 nanoparticles, which is responsible for the remarkable increase in photocatalytic activity.
-
Keywords:
- Ag antidot arrays /
- TiO2 films /
- photocatalysis performance /
- charge carriers
[1] Zhang X J, Liu Q J, Deng S G, Chen J, Gao P 2011 Acta Phys. Sin. 60 087103 (in Chinese) [张学军, 柳清菊, 邓曙光, 陈娟, 高攀 2011 物理学报 60 087103]
[2] Arconada N, Castro Y, Durán A 2010 Appl. Catal. A 385 101
[3] Ma H M, Hong L, Yin Y, Xu J, Ye H 2011 Acta Phys. Sin. 60 098105 (in Chinese) [马海敏, 洪亮, 尹伊, 许坚, 叶辉 2011 物理学报 60 098105]
[4] Gutmann S, Wolak M A, Conrad M, Beerbom M M, Schlaf R 2011 J. Appl. Phys. 109 113719
[5] Prasad A K, Jha R, Ramaseshan R, Dash S, Manna I, Tyagi A K 2011 Surf. Eng. 27 350
[6] Li T J, Li G P, Ma J P, Gao X X 2011 Acta Phys. Sin. 60 116102 (in Chinese) [李天晶, 李公平, 马俊平, 高行新 2011 物理学报 60 116102]
[7] Wang T M, Wang Y 2010 Mater. China 29 60 (in Chinese) [王天民, 王莹 2010 中国材料进展 29 60]
[8] Huang L H, Sun C, Liu Y L 2007 Appl. Surf. Sci. 253 7029
[9] Zhang Y G, Wang Y X 2011 J. Appl. Phys. 110 033519
[10] Kim K D, Han D N, Lee J B, Kim H T 2006 Scripta Mater. 54 143
[11] Stir M, Nicula R, Burkel E 2006 J. Eur. Ceram. Soc. 26 1547
[12] Wang C M, Zhang Y, Shutthanandan V, Thevuthasan S, Duscher G 2004 J. Appl. Phys. 95 8185
[13] Zou J J, Chen C, Liu C J, Zhang Y P, Han Y, Cui L 2005 Mater. Lett. 59 3437
[14] Nakata K, Udagawa K, Tryk D A, Ochiai T, Nishimoto S, Sakai H, Murakami T, Abe M, Fujishima A 2009 Mater. Lett. 63 1628
[15] Zheng S K, Wang T M, Hao W C, Shen R 2002 Vacuum 65 155
[16] Zhang X W, Zhou M H, Lei L C 2005 Mater. Chem. Phys. 91 73
[17] Zhao, Z Y, Liu Q J, Zhu Z Q, Zhang J 2008 Acta Phys. Sin. 57 3760 (in Chinese) [赵宗彦, 柳清菊, 朱忠其, 张瑾 2008 物理学报 57 3760]
[18] Qi H F, Hao W C, Xu H Z, Zhang J Y, Wang T M 2009 Colloid. Polym. Sci. 287 243
[19] Subramanian V, Wolf E E, Kamat P V 2003 J. Phys. Chem. B 107 7479
-
[1] Zhang X J, Liu Q J, Deng S G, Chen J, Gao P 2011 Acta Phys. Sin. 60 087103 (in Chinese) [张学军, 柳清菊, 邓曙光, 陈娟, 高攀 2011 物理学报 60 087103]
[2] Arconada N, Castro Y, Durán A 2010 Appl. Catal. A 385 101
[3] Ma H M, Hong L, Yin Y, Xu J, Ye H 2011 Acta Phys. Sin. 60 098105 (in Chinese) [马海敏, 洪亮, 尹伊, 许坚, 叶辉 2011 物理学报 60 098105]
[4] Gutmann S, Wolak M A, Conrad M, Beerbom M M, Schlaf R 2011 J. Appl. Phys. 109 113719
[5] Prasad A K, Jha R, Ramaseshan R, Dash S, Manna I, Tyagi A K 2011 Surf. Eng. 27 350
[6] Li T J, Li G P, Ma J P, Gao X X 2011 Acta Phys. Sin. 60 116102 (in Chinese) [李天晶, 李公平, 马俊平, 高行新 2011 物理学报 60 116102]
[7] Wang T M, Wang Y 2010 Mater. China 29 60 (in Chinese) [王天民, 王莹 2010 中国材料进展 29 60]
[8] Huang L H, Sun C, Liu Y L 2007 Appl. Surf. Sci. 253 7029
[9] Zhang Y G, Wang Y X 2011 J. Appl. Phys. 110 033519
[10] Kim K D, Han D N, Lee J B, Kim H T 2006 Scripta Mater. 54 143
[11] Stir M, Nicula R, Burkel E 2006 J. Eur. Ceram. Soc. 26 1547
[12] Wang C M, Zhang Y, Shutthanandan V, Thevuthasan S, Duscher G 2004 J. Appl. Phys. 95 8185
[13] Zou J J, Chen C, Liu C J, Zhang Y P, Han Y, Cui L 2005 Mater. Lett. 59 3437
[14] Nakata K, Udagawa K, Tryk D A, Ochiai T, Nishimoto S, Sakai H, Murakami T, Abe M, Fujishima A 2009 Mater. Lett. 63 1628
[15] Zheng S K, Wang T M, Hao W C, Shen R 2002 Vacuum 65 155
[16] Zhang X W, Zhou M H, Lei L C 2005 Mater. Chem. Phys. 91 73
[17] Zhao, Z Y, Liu Q J, Zhu Z Q, Zhang J 2008 Acta Phys. Sin. 57 3760 (in Chinese) [赵宗彦, 柳清菊, 朱忠其, 张瑾 2008 物理学报 57 3760]
[18] Qi H F, Hao W C, Xu H Z, Zhang J Y, Wang T M 2009 Colloid. Polym. Sci. 287 243
[19] Subramanian V, Wolf E E, Kamat P V 2003 J. Phys. Chem. B 107 7479
Catalog
Metrics
- Abstract views: 7588
- PDF Downloads: 460
- Cited By: 0