Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ion implantation isolation based micro-light-emitting diode device array properties

Gao Cheng-Hao Xu Feng Zhang Li Zhao De-Sheng Wei Xing Che Ling-Juan Zhuang Yong-Zhang Zhang Bao-Shun Zhang Jing

Citation:

Ion implantation isolation based micro-light-emitting diode device array properties

Gao Cheng-Hao, Xu Feng, Zhang Li, Zhao De-Sheng, Wei Xing, Che Ling-Juan, Zhuang Yong-Zhang, Zhang Bao-Shun, Zhang Jing
PDF
HTML
Get Citation
  • Compared with conventional light-emitting diode (LED), micro-LED has excellent photo-electric properties such as high current density, light output power density, light response frequency. It has widespread application prospects in the field of light display, optical tweezers, and visible light communication. However, dry etching inevitably leads the sidewall to be damaged, which results in the degradation of device properties. In this letter, a micro-LED array device based on F ions implantation isolation technology is presented to avoid damaging the sidewall. We systemically investigate the influence of fluorine ion implantation energy and light-emitting apertures on the photoelectric properties of the micro-LED array device by testing the current-voltage characteristic and light output power. The investigation results show that comparing with F ion 50 keV single implantation device, the reverse leakage of 50/100 keV double implantation device decreases by 8.4 times and the optical output density increases by 1.3 times. When the light-emitting apertures are different (6, 8, 10 μm respectively), the reverse leakage current remains constant, and the forward operating voltage decreasesfrom 3.3 V to 3.1 V and to 2.9 V with the increase of the aperture. Besides, the available area ratio, i.e. the ratio of actual light-emitting area to device area of single micro-LED with different light-emitting apertures are 85%, 87%, and 92%, respectively. The electrical isolation of the micro-LED array is realized by ion implantation isolation technology, and the micro-LED has some advantages over the conventional mesa etching micro-LED device, such as low reverse leakage current density, high optical output power density, and high effective light-emitting area ratio.
      Corresponding author: Xu Feng, fxu2018@sinano.ac.cn ; Zhang Bao-Shun, bszhang2006@sinano.ac.cn ; Zhang Jing, zhangjingcust@cust.edu.cn
    • Funds: Project supported by the Special Scientific Research Fund of Major Science and Technology Bidding in Jilin Province, China (Grant No. 20170203014G), the National Natural Science Foundation of China (Grant Nos. U1830112, 61774014), the Jiangsu Planned Projects for Postdoctoral Research Funds, China (Grant No. 2018K008C), and the Key Industry Technology Innovation Program of Suzhou, China (Grant No. SYG201928)
    [1]

    Zhang L, Ou F, Chong W C, Chen Y J, Li Q M 2018 J. Soc. Inf. Disp. 26 137Google Scholar

    [2]

    Day J, Li J, Lie D Y C, Bradford C, Y. Lin J, Jiang H X 2011 Appl. Phys. Lett. 99 031116Google Scholar

    [3]

    Zhang X, Li P A, Zou X B, Jiang J M, Yuen S H, Tang C W, Lau K M 2019 IEEE Photonics Technol. Lett. 31 865Google Scholar

    [4]

    Xie E Y, He X Y, Islim M S, Purwita A A, McKendry J J D, Gu E, Haas H, Dawson M D 2019 J. Lightwave Technol. 37 1180Google Scholar

    [5]

    Alicja Z D, Steven L N, David M, Jonathan M, Bruce R R, Robert K H, Mervyn J R, Huabing Y, Jonathan M C, Erdan G, Martin D D 2011 Opt. Express 19 3

    [6]

    McAlinden N, Massoubre D, Richardson E, Gu E, Sakata S, Dawson M D, Mathieson K 2013 Opt. Lett. 38 992Google Scholar

    [7]

    郭建新, 郭海成 2000 物理学报 49 1995

    Guo J X, Kwok H S 2000 Acta Phys. Sin. 49 1995

    [8]

    Komoda T, Sasabe H, Kido J 2018 25th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD) Kyoto, Japan, July 3–6, 2018 p978

    [9]

    何家琪, 何大伟, 王永生, 刘智勇 2013 物理学报 62 178801Google Scholar

    He J Q, He D W, Wang Y S, Liu Z Y 2013 Acta Phys. Sin. 62 178801Google Scholar

    [10]

    Son K R, Lee T H, Lee B R, Im H S, Kim T G 2018 Small 14 1801032Google Scholar

    [11]

    Li P, Zhao Y, Li H, Li Z, Zhang Y, Kang J, Liang M, Liu Z, Yi X, Wang G 2019 Nanotechnology 30 095203Google Scholar

    [12]

    Chen C J, Chen H C, Liao J Hao, Yu C J, Wu M C 2019 IEEE J. Quantum Electron. 55 2Google Scholar

    [13]

    班章, 梁静秋, 吕金光, 梁中翥, 冯思悦 2013 物理学报 67 070701Google Scholar

    Ban Z, Liang J Q, Lv J G, Liang Z Z, Feng S Y 2013 Acta Phys. Sin. 67 070701Google Scholar

    [14]

    Jin S X, Li J, Li J Z, Lin J Y, Jiang H X 1999 Appl. Phys. Lett. 76 631

    [15]

    龚欣, 吕玲, 郝跃, 李培咸, 周小伟, 陈海峰 2007 半导体学报 28 7

    Gong X, Lv L, Hao Y, Li P X, Zhou X W, Chen H F 2007 Chin. J. Semiconductors 28 7

    [16]

    Kou J Q, Shen C C, Shao H, Che J M, Hou X, Chu C S, Tian K K, Zhang Y G, Zhang Z H, Kuo H C 2019 Opt. Express 27 643Google Scholar

    [17]

    Olivier F, Tirano S, Dupre L, Aventurier B, Largeron C, Templier F Spring Meeting of the European-Materials-Research-Society (E-MRS)/Symposium M on Silicon Compatible Materials and Integrated Devices for Photonics and Optical Sensing Lille, FRANCE, MAY 02–06, 2016 p191

    [18]

    Tian P F, McKendry J J D, Zheng G, Guilhabert B, Watson I M, Gu E, Chen Z Z, Zhang G Y, Dawson M D 2012 Appl. Phys. Lett. 101 23

    [19]

    Hwang D, Mughal A, Pynn C D, Nakamura S, DenBaars S P 2017 Appl. Phys. Express 10 032101Google Scholar

    [20]

    张志利 2017 博士学位论文 (合肥: 中国科学院大学)

    Zhang Z L 2017 Ph. D. Dissertation (Hefei: University of Chinese Academy of Sciences) (in Chinese)

    [21]

    Pearton S J, Abernathy C R, Vartuli C B 1995 Appl. Phys. Lett. 66 3042Google Scholar

    [22]

    Kucheyeva S O, Williamsa J S, Peartonb S J 2001 Mater. Sci. Eng. R-Rep. 33 51Google Scholar

    [23]

    Dupre L, Marra M, Verney V, Aventurier B, Henry F, Olivier F, Tirano S, Daami A, Templier F Conference on Gallium Nitride Materials and Devices XII San Francisco, CA, JAN 30–FEB 02, 2017 p1010422-1

    [24]

    Li C C, Zhan J L, Chen Z Z, Jiao F, Chen Y F, Chen Y Y, Nie J X, Kang X N, Li S F, Wang Q, Zhang G Y, Shen B 2019 Opt. Express 27 A1146Google Scholar

    [25]

    Wong M S, Hwang D, Alhassan A I, Lee C, Ley R, Nakamura S, DenBaars S P 2018 Opt. Express 26 21324Google Scholar

    [26]

    Choi H W, Jeon C W, Dawson M D, Edwards P R, Martin R W, Tripathy S 2003 J. Appl. Phys. 93 5978Google Scholar

    [27]

    Gong Z, Massoubre D, McKendry J, Zhang H X, Griffin C, Guilhabert B, Gu E, Girkin J M, Dawson M D, Rael B R, Henderson R K International Workshop on Nitride Semiconductors Montreux, SWITZERLAND, OCT 06–10, 2008 p6

    [28]

    Xie E Y, Stonehouse M, Ferreira R, McKendry J J D, Herrnsdorf J, He X, Rajbhandari S, Chun H, Jalajakumari A V N, Almer O, Faulkner G, Watson I M, Gu E, Henderson Robert, O’Brien D, Dawson M D 2017 IEEE Photonics J. 9 1

    [29]

    Chen C J, Chen H C, Liao J H, Yu C J, Wu M C 2019 IEEE J. Quantum Electron. 55 1

    [30]

    Stoller R E, Toloczko M B, Was G S, Certain A G, Dwaraknath S, Garner F A 2013 Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 310 75Google Scholar

  • 图 1  (a) micro-LED阵列结构图; (b) 10 μm micro-LED阵列表面SEM图像

    Figure 1.  (a) Schematic structure of micro-LED array; (b) SEM image of 10 μm micro-LED array surface.

    图 2  样品A和B 6 μm阵列的(a) I-V 特性和(b)光输出密度-电流密度特性

    Figure 2.  (a) The I-V and (b) light output power density-current density characteristics of 6 μm arrays of samples A and B

    图 3  注入隔离micro-LED器件与台面刻蚀器件 (a)反向漏电流和(b)光输出密度比较

    Figure 3.  Comparison of (a) reverse leakage current and (b) light output density between implanted isolated micro-LED devices and mesa etching devices.

    图 4  SRIM模拟F离子不同注入能量下产生的损伤与注入深度关系

    Figure 4.  The relationship between damage and implantation depth of F ion with different implantation energies with SRIM simulation.

    图 5  CTLM测量原理图

    Figure 5.  Schematic of CTLM test.

    图 6  CTLM线性拟合曲线 (a) 50 keV能量注入; (b) 50/100 keV能量注入

    Figure 6.  The CTLM linear fitting curve at (a) the implantation energy of 50 keV and (b) 50/100 keV.

    图 7  不同发光孔径阵列I-V特性曲线

    Figure 7.  I-V characteristics of the different emission aperture arrays.

    图 8  20 mA下 (a) 6 μm, (b) 8 μm, (c) 10 μm发光孔径阵列发光图像

    Figure 8.  Light-emitting aperture arrays of (a) 6 μm, (b) 8 μm, and (c)10 μm at 20 mA.

    表 1  6 μm micro-LED阵列光电性能参数

    Table 1.  The photoelectric properties of 6 μm micro-LED array.

    样品工作电压(20 mA)/V反向漏电流(–5 V)/A光输出密度(2264 A/cm–2)/W·cm–2
    A3.692.89 × 10–731.34
    B3.273.43 × 10–840.59
    DownLoad: CSV

    表 2  样品B单颗发光孔径实际发光情况

    Table 2.  The actual emission condition of single light-emitting aperture in sample B.

    器件尺寸/μm681020[16]10[17]
    隔离方式注入台面刻蚀
    实际发光区域
    实际发光面积S1/μm224.1043.9272.0414470 ± 10
    器件面积 S2/μm228.2650.2478.50400100
    S1/S2/%85%87%92%36%70 ± 10
    DownLoad: CSV
  • [1]

    Zhang L, Ou F, Chong W C, Chen Y J, Li Q M 2018 J. Soc. Inf. Disp. 26 137Google Scholar

    [2]

    Day J, Li J, Lie D Y C, Bradford C, Y. Lin J, Jiang H X 2011 Appl. Phys. Lett. 99 031116Google Scholar

    [3]

    Zhang X, Li P A, Zou X B, Jiang J M, Yuen S H, Tang C W, Lau K M 2019 IEEE Photonics Technol. Lett. 31 865Google Scholar

    [4]

    Xie E Y, He X Y, Islim M S, Purwita A A, McKendry J J D, Gu E, Haas H, Dawson M D 2019 J. Lightwave Technol. 37 1180Google Scholar

    [5]

    Alicja Z D, Steven L N, David M, Jonathan M, Bruce R R, Robert K H, Mervyn J R, Huabing Y, Jonathan M C, Erdan G, Martin D D 2011 Opt. Express 19 3

    [6]

    McAlinden N, Massoubre D, Richardson E, Gu E, Sakata S, Dawson M D, Mathieson K 2013 Opt. Lett. 38 992Google Scholar

    [7]

    郭建新, 郭海成 2000 物理学报 49 1995

    Guo J X, Kwok H S 2000 Acta Phys. Sin. 49 1995

    [8]

    Komoda T, Sasabe H, Kido J 2018 25th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD) Kyoto, Japan, July 3–6, 2018 p978

    [9]

    何家琪, 何大伟, 王永生, 刘智勇 2013 物理学报 62 178801Google Scholar

    He J Q, He D W, Wang Y S, Liu Z Y 2013 Acta Phys. Sin. 62 178801Google Scholar

    [10]

    Son K R, Lee T H, Lee B R, Im H S, Kim T G 2018 Small 14 1801032Google Scholar

    [11]

    Li P, Zhao Y, Li H, Li Z, Zhang Y, Kang J, Liang M, Liu Z, Yi X, Wang G 2019 Nanotechnology 30 095203Google Scholar

    [12]

    Chen C J, Chen H C, Liao J Hao, Yu C J, Wu M C 2019 IEEE J. Quantum Electron. 55 2Google Scholar

    [13]

    班章, 梁静秋, 吕金光, 梁中翥, 冯思悦 2013 物理学报 67 070701Google Scholar

    Ban Z, Liang J Q, Lv J G, Liang Z Z, Feng S Y 2013 Acta Phys. Sin. 67 070701Google Scholar

    [14]

    Jin S X, Li J, Li J Z, Lin J Y, Jiang H X 1999 Appl. Phys. Lett. 76 631

    [15]

    龚欣, 吕玲, 郝跃, 李培咸, 周小伟, 陈海峰 2007 半导体学报 28 7

    Gong X, Lv L, Hao Y, Li P X, Zhou X W, Chen H F 2007 Chin. J. Semiconductors 28 7

    [16]

    Kou J Q, Shen C C, Shao H, Che J M, Hou X, Chu C S, Tian K K, Zhang Y G, Zhang Z H, Kuo H C 2019 Opt. Express 27 643Google Scholar

    [17]

    Olivier F, Tirano S, Dupre L, Aventurier B, Largeron C, Templier F Spring Meeting of the European-Materials-Research-Society (E-MRS)/Symposium M on Silicon Compatible Materials and Integrated Devices for Photonics and Optical Sensing Lille, FRANCE, MAY 02–06, 2016 p191

    [18]

    Tian P F, McKendry J J D, Zheng G, Guilhabert B, Watson I M, Gu E, Chen Z Z, Zhang G Y, Dawson M D 2012 Appl. Phys. Lett. 101 23

    [19]

    Hwang D, Mughal A, Pynn C D, Nakamura S, DenBaars S P 2017 Appl. Phys. Express 10 032101Google Scholar

    [20]

    张志利 2017 博士学位论文 (合肥: 中国科学院大学)

    Zhang Z L 2017 Ph. D. Dissertation (Hefei: University of Chinese Academy of Sciences) (in Chinese)

    [21]

    Pearton S J, Abernathy C R, Vartuli C B 1995 Appl. Phys. Lett. 66 3042Google Scholar

    [22]

    Kucheyeva S O, Williamsa J S, Peartonb S J 2001 Mater. Sci. Eng. R-Rep. 33 51Google Scholar

    [23]

    Dupre L, Marra M, Verney V, Aventurier B, Henry F, Olivier F, Tirano S, Daami A, Templier F Conference on Gallium Nitride Materials and Devices XII San Francisco, CA, JAN 30–FEB 02, 2017 p1010422-1

    [24]

    Li C C, Zhan J L, Chen Z Z, Jiao F, Chen Y F, Chen Y Y, Nie J X, Kang X N, Li S F, Wang Q, Zhang G Y, Shen B 2019 Opt. Express 27 A1146Google Scholar

    [25]

    Wong M S, Hwang D, Alhassan A I, Lee C, Ley R, Nakamura S, DenBaars S P 2018 Opt. Express 26 21324Google Scholar

    [26]

    Choi H W, Jeon C W, Dawson M D, Edwards P R, Martin R W, Tripathy S 2003 J. Appl. Phys. 93 5978Google Scholar

    [27]

    Gong Z, Massoubre D, McKendry J, Zhang H X, Griffin C, Guilhabert B, Gu E, Girkin J M, Dawson M D, Rael B R, Henderson R K International Workshop on Nitride Semiconductors Montreux, SWITZERLAND, OCT 06–10, 2008 p6

    [28]

    Xie E Y, Stonehouse M, Ferreira R, McKendry J J D, Herrnsdorf J, He X, Rajbhandari S, Chun H, Jalajakumari A V N, Almer O, Faulkner G, Watson I M, Gu E, Henderson Robert, O’Brien D, Dawson M D 2017 IEEE Photonics J. 9 1

    [29]

    Chen C J, Chen H C, Liao J H, Yu C J, Wu M C 2019 IEEE J. Quantum Electron. 55 1

    [30]

    Stoller R E, Toloczko M B, Was G S, Certain A G, Dwaraknath S, Garner F A 2013 Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 310 75Google Scholar

  • [1] Peng Teng, Wang Hui-Yao, Zhao Xi, Liu Jun-Hong, Wang Bo, Wang Jing-Jing, Zhou Yin-Qiong, Zhang Ke-Yi, Yang Jun, Xiong Zu-Hong. Modulation of half-band-gap turn-on electroluminescence in Rubrene/C60 based OLEDs by electron injection layer mobility. Acta Physica Sinica, 2024, 73(21): 217202. doi: 10.7498/aps.73.20240864
    [2] Zhao Jian-Cheng, Wu Chao-Xing, Guo Tai-Liang. Carrier transport model of non-carrier-injection light-emitting diode. Acta Physica Sinica, 2023, 72(4): 048503. doi: 10.7498/aps.72.20221831
    [3] Huang Xin-Mei, He Xiao-Li, Xu Qiang, Chen Ping, Zhang Yong, Gao Chun-Hong. Ionic-compound based high performance perovskite light emitting diodes. Acta Physica Sinica, 2022, 71(20): 208502. doi: 10.7498/aps.71.20220858
    [4] Li Xue, Cao Bao-Long, Wang Ming-Hao, Feng Zeng-Qin, Chen Shu-Fen. Perovskite light-emitting diode based on combination of modified hole-injection layer and polymer composite emission layer. Acta Physica Sinica, 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [5] Luo Chang-Wei, Qiu Meng-Lin, Wang Guang-Fu, Wang Ting-Shun, Zhao Guo-Qiang, Hua Qing-Song. Ions beam induced luminescence study of variation of defects in zinc oxide during ion implant and after annealing. Acta Physica Sinica, 2020, 69(10): 102901. doi: 10.7498/aps.69.20200029
    [6] Wu Jia-Long, Dou Yong-Jiang, Zhang Jian-Feng, Wang Hao-Ran, Yang Xu-Yong. Perovskite light-emitting diodes based on solution-processed metal-doped nickel oxide hole injection layer. Acta Physica Sinica, 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [7] Tai Jian-Peng, Guo Wei-Ling, Li Meng-Mei, Deng Jie, Chen Jia-Xin. GaN based micro-light-emitting diode size effect and array display. Acta Physica Sinica, 2020, 69(17): 177301. doi: 10.7498/aps.69.20200305
    [8] Huang Wei, Li Yue-Long, Ren Hui-Zhi, Wang Peng-Yang, Wei Chang-Chun, Hou Guo-Fu, Zhang De-Kun, Xu Sheng-Zhi, Wang Guang-Cai, Zhao Ying, Yuan Ming-Jian, Zhang Xiao-Dan. Perovskite light-emitting diodes based on n-type nanocrystalline silicon oxide electron injection layer. Acta Physica Sinica, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [9] Ban Zhang, Liang Jing-Qiu, Lü Jin-Guang, Liang Zhong-Zhu, Feng Si-Yue. Study on uniform irradiance of micro curved-light-emitting diode array. Acta Physica Sinica, 2018, 67(7): 070701. doi: 10.7498/aps.67.20172596
    [10] Jia Bo-Lun, Deng Ling-Ling, Chen Ruo-Xi, Zhang Ya-Nan, Fang Xu-Min. Numerical research of emission properties of localized surface plasmon resonance enhanced light-emitting diodes based on Ag@SiO2 nanoparticles. Acta Physica Sinica, 2017, 66(23): 237801. doi: 10.7498/aps.66.237801
    [11] Liu Hao-Jie, Lan Tian, Ni Guo-Qiang. Research on the light emitting diode array launching performance for indoor visible light communication. Acta Physica Sinica, 2014, 63(23): 238503. doi: 10.7498/aps.63.238503
    [12] Liu Bai-Quan, Lan Lin-Feng, Zou Jian-Hua, Peng Jun-Biao. A novel organic light-emitting diode by utilizing double hole injection layer. Acta Physica Sinica, 2013, 62(8): 087302. doi: 10.7498/aps.62.087302
    [13] Wang Chong, Yang Yu, Yang Rui-Dong, Li Liang, Wei Dong, Jin Ying-Xia, Bao Ji-Ming. Manipulations of properties of the W-line emitting from the Si+ Self-ion-implanted Si thin films on insulated oxide layer. Acta Physica Sinica, 2011, 60(10): 106104. doi: 10.7498/aps.60.106104
    [14] Zhao Bao-Feng, Tang Huai-Jun, Yu Lei, Wang Bao-Zheng, Wen Shang-Sheng. Efficient white polymeric light-emitting diodes by doping ionic iridium complex. Acta Physica Sinica, 2011, 60(8): 088502. doi: 10.7498/aps.60.088502
    [15] Xing Yan-Hui, Han Jun, Deng Jun, Li Jian-Jun, Xu Chen, Shen Guang-Di. Improved properties of light emitting diode by rough p-GaN grown at lower temperature. Acta Physica Sinica, 2010, 59(2): 1233-1236. doi: 10.7498/aps.59.1233
    [16] Miao Jing-Wei, Wang Pei-Lu, Zhu Zhou-Sen, Yuan Xue-Dong, Wang Hu, Yang Chao-Wen, Shi Mian-Gong, Miao Lei, Sun Wei-Li, Zhang Jing, Liao Xue-Hua. Photoluminescence spectrum of monocrystalline Si implanted by nitrogen cluster ions. Acta Physica Sinica, 2008, 57(4): 2174-2178. doi: 10.7498/aps.57.2174
    [17] Huang Wen-Bo, Peng Jun-Biao. Carrier injection process of polymer light-emitting diodes. Acta Physica Sinica, 2007, 56(5): 2974-2978. doi: 10.7498/aps.56.2974
    [18] Zhang Xiao-Dong, Lin De-Xu, Li Gong-Ping, You Wei, Zhang Li-Min, Zhang Yu, Liu Zheng-Min. Broadband yellow luminescence in the photoluminescence spectra of n-GaN implanted by the different ions. Acta Physica Sinica, 2006, 55(10): 5487-5493. doi: 10.7498/aps.55.5487
    [19] YANG YU, XIA GUAN-QUN, ZHAO GUO-QING, WANG XUN. Si+ ION IMPLANTATION INFLUENCE ON PHOTOLUMINESCENCE IN Si1-xGex/Si QUANTUM WELLS GROWN BY MOLECULAR BEAM EPITAXY. Acta Physica Sinica, 1998, 47(6): 978-984. doi: 10.7498/aps.47.978
    [20] TIAN REN-HE, LU WU-XING, LI ZHU-HUAI, GAO YU-ZUN. A STUDY OF SECONDARY DEFECTS IN ION- IMPLANTED InSb. Acta Physica Sinica, 1992, 41(5): 809-813. doi: 10.7498/aps.41.809
Metrics
  • Abstract views:  11709
  • PDF Downloads:  220
  • Cited By: 0
Publishing process
  • Received Date:  18 September 2019
  • Accepted Date:  28 October 2019
  • Available Online:  01 January 2020
  • Published Online:  20 January 2020

/

返回文章
返回