Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Near-field infrared microscopy of graphene on metal substrate

Cen Gui Zhang Zhi-Bin Lü Xin-Yu Liu Kai-Hui Li Zhi-Qiang

Citation:

Near-field infrared microscopy of graphene on metal substrate

Cen Gui, Zhang Zhi-Bin, Lü Xin-Yu, Liu Kai-Hui, Li Zhi-Qiang
PDF
HTML
Get Citation
  • Graphene plasmons, collective oscillation modes of electrons in graphene, have recently attracted intense attention in both the fundamental researches and the applications because of their strong field confinement, low loss and excellent tunability. The dispersion of graphene plasmons can be significantly modified in the system of graphene on metal substrate, in which the screening of the long-range part of the electron-electron interactions by nearby metal can lead to many novel quantum effects, such as acoustic plasmons, quantum nonlocal effects and renormalization of band structure. Scattering-type scanning near-field optical microscopy (s-SNOM) which consists of a laser coupled to the tip of an atomic force microscopy (AFM), is an effective technique to directly probe plasmons in two-dimensional materials including graphene, and the graphene plasmons can be observed visually by real-space imaging. But so far the detailed s-SNOM studies of graphene/metal system have not been reported. One potential challenge is that the near-field response of highly conductive metal substrate may partially or entirely obscure that of graphene, making it difficult to further explore graphene by using s-SNOM. Here in this paper, we report the direct observation of near-field optical response of graphene in a graphene/metal system excited by a mid-infrared quantum cascade laser. From a close examination of the data of graphene/Cu compared with that of h-BN/Cu, we are able to identify experimental features due to the near-field response of graphene. Surprisingly, two completely different behaviors are observed in the s-SNOM data for different graphene samples on Cu substrates with similar surface step geometries. These results suggest that the near-field response of graphene/metal system is not completely dominated by the metal substrate, and that two completely different near-field response behaviors of graphene may be attributed to their intrinsic properties affected by metal substrates themselves rather than surface step geometries of metal substrate. In addition, following this approach it is possible to distinguish the near-field optical responses of graphene from that of graphene/metal system. Our work reveals the clear signatures of the near-field optical response of graphene on metal substrate, which provides the foundation for probing plasmons in these systems by using the s-SNOM and understanding many novel quantum phenomena therein.
      Corresponding author: Li Zhi-Qiang, zhiqiangli@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11874271)
    [1]

    Basov D N, Fogler M M, de Abajo F J G 2016 Science 354 6309Google Scholar

    [2]

    Chen X, Hu D, Mescall R, You G, Basov D N, Dai Q, Liu M 2019 Adv. Mater. 31 1804774Google Scholar

    [3]

    Atkin J M, Berweger S, Jones A C, Raschke M B 2012 Adv. Phys. 61 745Google Scholar

    [4]

    Low T, Avouris P 2014 ACS Nano 8 1086Google Scholar

    [5]

    段嘉华, 陈佳宁 2019 物理学报 68 110701Google Scholar

    Duan J H, Chen J N 2019 Acta Phys. Sin. 68 110701Google Scholar

    [6]

    Lundeberg M B, Gao Y, Asgari R, Tan C, Duppen B V, Autore M, Alonso González P, Woessner A, Watanabe K, Taniguchi T, Hillenbrand R, Hone J, Polini M, Koppens F H L 2017 Science 357 187Google Scholar

    [7]

    Principi A, Asgari R, Polini M 2011 Solid State Commun. 151 1627Google Scholar

    [8]

    Principi A, Loon E v, Polini M, Katsnelson M I 2018 Phys. Rev. B. 98 035427Google Scholar

    [9]

    Alkorre H, Shkerdin G, Stiens J, Vounckx R 2015 J. Opt. 17 045003Google Scholar

    [10]

    Chen J, Badioli M, Alonso González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, de Abajo F J G, Hillenbrand R, Koppens F H K 2012 Nature 487 77Google Scholar

    [11]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Neto A H C, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82Google Scholar

    [12]

    Ni G X, Wang H, Wu J S, Fei Z, Goldflam M D, Keilmann F, Özyilmaz B, Neto A H C, Xie X M, Fogler M M, Basov D N 2015 Nat. Mater. 14 1217Google Scholar

    [13]

    Dai S, Ma Q, Liu M K, Andersen T, Fei Z, Goldflam M D, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Janssen G C A M, Zhu S E, Jarillo Herrero P, Fogler M M, Basov D N 2015 Nat. Nanotechnol. 10 682Google Scholar

    [14]

    Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens F H L 2015 Nat. Mater. 14 421Google Scholar

    [15]

    Yang X, Zhai F, Hu H, Hu D, Liu R, Zhang S, Sun M, Sun Z, Chen J, Dai Q 2016 Adv. Mater. 28 2931Google Scholar

    [16]

    Jiang L, Shi Z, Zeng B, Wang S, Kang J H, Joshi T, Jin C, Ju L, Kim J, Lyu T, Shen Y R, Crommie M, Gao H J, Wang F 2016 Nat. Mater. 15 840Google Scholar

    [17]

    Sunku S S, Ni G X, Jiang B Y, Yoo H, Sternbach A, McLeod A S, Stauber T, Xiong L, Taniguchi T, Watanabe K, Kim P, Fogler M M, Basov D N 2018 Science 362 1153Google Scholar

    [18]

    Jiang B Y, Ni G X, Addison Z, Shi J K, Liu X, Zhao S Y F, Kim P, Mele E J, Basov D N, Fogler M M 2017 Nano Lett. 17 7080Google Scholar

    [19]

    Jiang B Y, Zhang L M, Neto A H C, Basov D N, Fogler M M 2016 J. Appl. Phys. 119 054305Google Scholar

    [20]

    Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H, Liao C, Song H, Qiao R, Gao P, Hu Z, Liao L, Liao Z, Yu D, Wang E, Ding F, Peng H, Liu K 2016 Nat. Nanotechnol. 11 930Google Scholar

    [21]

    Xu X, Zhang Z, Dong J, Yi D, Niu J, Wu M, Lin L, Yin R, Li M, Zhou J, Wang S, Sun J, Duan X, Gao P, Jiang Y, Wu X, Peng H, Ruoff R S, Liu Z, Yu D, Wang E, Ding F, Liu K 2017 Sci. Bull. 62 1074Google Scholar

    [22]

    Liu C, Xu X, Qiu L, Wu M, Qiao R, Wang L, Wang J, Niu J, Liang J, Zhou X, Zhang Z, Peng M, Gao P, Wang W, Bai X, Ma D, Jiang Y, Wu X, Yu D, Wang E, Xiong J, Ding F, Liu K 2019 Nature Chem. 11 730Google Scholar

    [23]

    Wang L, Xu X, Zhang L, Qiao R, Wu M, Wang Z, Zhang S, Liang J, Zhang Z, Zhang Z, Chen W, Xie X, Zong J, Shan Y, Guo Y, Willinger M, Wu H, Li Q, Wang W, Gao P, Wu S, Zhang Y, Jiang Y, Yu D, Wang E, Bai X, Wang Z J, Ding F, Liu K 2019 Nature 570 91Google Scholar

    [24]

    Babicheva V E, Gamage S, Stockman M I, Abate Y 2017 Opt. Express 25 23935Google Scholar

    [25]

    Abate Y, Gamage S, Li Z, Babicheva V, Javani M H, Wang H, Cronin S B, Stockman M I 2016 Light Sci. Appl. 5 e16162Google Scholar

    [26]

    Costa S D, Weis J E, Frank O, Kalbac M 2015 Carbon. 93 793Google Scholar

    [27]

    Frank O, Vejpravova J, Holy V, Kavan L, Kalbac M 2014 Carbon. 68 440Google Scholar

    [28]

    Walter A L, Nie S, Bostwick A, Kim K S, Moreschini L, Chang Y J, Innocenti D, Horn K, McCarty K F, Rotenberg E 2011 Phys. Rev. B. 84 195443Google Scholar

    [29]

    Lyu B, Li H, Jiang L, Shan W, Hu C, Deng A, Ying Z, Wang L, Zhang Y, Bechtel H A, Martin M C, Taniguchi T, Watanabe K, Luo W, Wang F, Shi Z 2019 Nano Lett. 19 1982Google Scholar

  • 图 1  s-SNOM示意图 一束红外光(IR)聚焦于针尖和样品之间, 针尖以频率$ \varOmega $和振幅A在竖直方向振动, 针尖与样品的距离为$H(t) ={H_0} + A(1 + {\rm{cos}}(\varOmega t))$, 其中${H_0}$表示针尖和样品的最小距离, 测量信号是针尖-样品系统的散射光${E_{{\rm{sc}}}}$

    Figure 1.  Schematic of s-SNOM. An infrared light is focused between the sample and the probe tip, which oscillate vertically with frequency $ \varOmega$ and amplitude A. The tip-sample distance is $H(t) ={H_0} + A(1 + {\rm{cos}}(\varOmega t))$, where ${H_0}$ is the minimum tip-sample distance. Incident light ${E_{{\rm{in}}}}$ interacts with tip-sample system, and is elastically scattered. The scattered field ${E_{{\rm{sc}}}}$ encodes the properties of the sample surface.

    图 2  生长在铜衬底上的石墨烯拉曼光谱2D峰呈现了单个的洛伦兹峰型, 表明是单层石墨烯; D峰没有出现, 表明是无缺陷的高质量石墨烯

    Figure 2.  Raman spectra of graphene on Cu substrate. The Lorentzian shape of 2D peak manifested that it is a monolayer graphene. Absence of D peak indicated its defect-free and high-quality nature.

    图 3  h-BN/Cu台阶成像图 (a) 针尖扫过台阶时的不同位置, ①和④表示针尖处于远离台阶的位置, ②和③分别表示信号峰值(两个热点形成处)和信号谷值对应的针尖位置, 图中的针尖与台阶以等比例画出, 针尖中的红色圆圈表示直径D = 25 nm的针尖尖端; (b) (a)中位置②处针尖与台阶边缘间隔的局部放大图, 红色箭头指出热点形成的位置; (c) 左侧: h-BN/Cu台阶的形貌(上)和s-SNOM成像(下); 右侧: 左侧图中蓝色实线对应的形貌(上)和s-SNOM信号(下), 其中标签①—④与(a)中的标签相对应, 黑色和红色虚线分别指出s-SNOM信号的不同特征(峰值、谷值和平台)

    Figure 3.  s-SNOM images of a h-BN/Cu step: (a) Different tip positions when the tip is scanned across a step. ① and ④ are the tip positions far away from the step, ② and ③ are the positions where a peak (corresponding to the formation of two hot-spots) and a dip appear in the s-SNOM signal, respectively. The tip and the step are shown in proportion. Red circle drew on the tip represents its apex with diameter of D = 25 nm; (b) Zoom-in on the gap between tip and sample at tip position ② in (a), which shows the two hot-spots by red arrows; (c) left panel: topography (upper) and s-SNOM image (lower) of h-BN/Cu at a surface step. Right panel: topography (upper) and s-SNOM line-profiles (lower) corresponding to the blue solid lines in the left panel. Labels ①–④ are corresponding to those in (a). Black and red dash lines indicate different features (peak, dip and plateau) in the s-SNOM line-profile.

    图 4  衬底台阶几何相近的两个石墨烯/铜样品的s-SNOM成像. 两种情况中, 左侧: 形貌(上)和s-SNOM成像(下); 右侧: 左侧图中蓝色实线对应的形貌(上)和s-SNOM信号(下) (a) 情况一, 台阶高度和宽度分别约为 5.3 nm和50 nm, 峰值和谷值分别对应台阶下方和下方边缘; (b)情况二, 台阶高度和宽度分别约为 5.5 nm和55 nm, 仅出现一个对应于台阶下方边缘的峰值

    Figure 4.  s-SNOM images of two graphene/Cu samples with similar surface step geometries. In both cases, left panel: topography (upper) and s-SNOM image (lower); right panel: line-profiles of topography (upper) and s-SNOM line-profiles (lower) corresponding to the blue solid lines in left panel. (a) Case 1 (peak-dip): step height of about 5.3 nm and width of about 50 nm. Signal peak and dip appear corresponding to the lower and upper edge of the step, respectively; (b) Case 2 (peak): step height of about 5.5 nm and width of about 55 nm. Only a signal peak appears corresponding to the lower edge of the step.

  • [1]

    Basov D N, Fogler M M, de Abajo F J G 2016 Science 354 6309Google Scholar

    [2]

    Chen X, Hu D, Mescall R, You G, Basov D N, Dai Q, Liu M 2019 Adv. Mater. 31 1804774Google Scholar

    [3]

    Atkin J M, Berweger S, Jones A C, Raschke M B 2012 Adv. Phys. 61 745Google Scholar

    [4]

    Low T, Avouris P 2014 ACS Nano 8 1086Google Scholar

    [5]

    段嘉华, 陈佳宁 2019 物理学报 68 110701Google Scholar

    Duan J H, Chen J N 2019 Acta Phys. Sin. 68 110701Google Scholar

    [6]

    Lundeberg M B, Gao Y, Asgari R, Tan C, Duppen B V, Autore M, Alonso González P, Woessner A, Watanabe K, Taniguchi T, Hillenbrand R, Hone J, Polini M, Koppens F H L 2017 Science 357 187Google Scholar

    [7]

    Principi A, Asgari R, Polini M 2011 Solid State Commun. 151 1627Google Scholar

    [8]

    Principi A, Loon E v, Polini M, Katsnelson M I 2018 Phys. Rev. B. 98 035427Google Scholar

    [9]

    Alkorre H, Shkerdin G, Stiens J, Vounckx R 2015 J. Opt. 17 045003Google Scholar

    [10]

    Chen J, Badioli M, Alonso González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, de Abajo F J G, Hillenbrand R, Koppens F H K 2012 Nature 487 77Google Scholar

    [11]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Neto A H C, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82Google Scholar

    [12]

    Ni G X, Wang H, Wu J S, Fei Z, Goldflam M D, Keilmann F, Özyilmaz B, Neto A H C, Xie X M, Fogler M M, Basov D N 2015 Nat. Mater. 14 1217Google Scholar

    [13]

    Dai S, Ma Q, Liu M K, Andersen T, Fei Z, Goldflam M D, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Janssen G C A M, Zhu S E, Jarillo Herrero P, Fogler M M, Basov D N 2015 Nat. Nanotechnol. 10 682Google Scholar

    [14]

    Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens F H L 2015 Nat. Mater. 14 421Google Scholar

    [15]

    Yang X, Zhai F, Hu H, Hu D, Liu R, Zhang S, Sun M, Sun Z, Chen J, Dai Q 2016 Adv. Mater. 28 2931Google Scholar

    [16]

    Jiang L, Shi Z, Zeng B, Wang S, Kang J H, Joshi T, Jin C, Ju L, Kim J, Lyu T, Shen Y R, Crommie M, Gao H J, Wang F 2016 Nat. Mater. 15 840Google Scholar

    [17]

    Sunku S S, Ni G X, Jiang B Y, Yoo H, Sternbach A, McLeod A S, Stauber T, Xiong L, Taniguchi T, Watanabe K, Kim P, Fogler M M, Basov D N 2018 Science 362 1153Google Scholar

    [18]

    Jiang B Y, Ni G X, Addison Z, Shi J K, Liu X, Zhao S Y F, Kim P, Mele E J, Basov D N, Fogler M M 2017 Nano Lett. 17 7080Google Scholar

    [19]

    Jiang B Y, Zhang L M, Neto A H C, Basov D N, Fogler M M 2016 J. Appl. Phys. 119 054305Google Scholar

    [20]

    Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H, Liao C, Song H, Qiao R, Gao P, Hu Z, Liao L, Liao Z, Yu D, Wang E, Ding F, Peng H, Liu K 2016 Nat. Nanotechnol. 11 930Google Scholar

    [21]

    Xu X, Zhang Z, Dong J, Yi D, Niu J, Wu M, Lin L, Yin R, Li M, Zhou J, Wang S, Sun J, Duan X, Gao P, Jiang Y, Wu X, Peng H, Ruoff R S, Liu Z, Yu D, Wang E, Ding F, Liu K 2017 Sci. Bull. 62 1074Google Scholar

    [22]

    Liu C, Xu X, Qiu L, Wu M, Qiao R, Wang L, Wang J, Niu J, Liang J, Zhou X, Zhang Z, Peng M, Gao P, Wang W, Bai X, Ma D, Jiang Y, Wu X, Yu D, Wang E, Xiong J, Ding F, Liu K 2019 Nature Chem. 11 730Google Scholar

    [23]

    Wang L, Xu X, Zhang L, Qiao R, Wu M, Wang Z, Zhang S, Liang J, Zhang Z, Zhang Z, Chen W, Xie X, Zong J, Shan Y, Guo Y, Willinger M, Wu H, Li Q, Wang W, Gao P, Wu S, Zhang Y, Jiang Y, Yu D, Wang E, Bai X, Wang Z J, Ding F, Liu K 2019 Nature 570 91Google Scholar

    [24]

    Babicheva V E, Gamage S, Stockman M I, Abate Y 2017 Opt. Express 25 23935Google Scholar

    [25]

    Abate Y, Gamage S, Li Z, Babicheva V, Javani M H, Wang H, Cronin S B, Stockman M I 2016 Light Sci. Appl. 5 e16162Google Scholar

    [26]

    Costa S D, Weis J E, Frank O, Kalbac M 2015 Carbon. 93 793Google Scholar

    [27]

    Frank O, Vejpravova J, Holy V, Kavan L, Kalbac M 2014 Carbon. 68 440Google Scholar

    [28]

    Walter A L, Nie S, Bostwick A, Kim K S, Moreschini L, Chang Y J, Innocenti D, Horn K, McCarty K F, Rotenberg E 2011 Phys. Rev. B. 84 195443Google Scholar

    [29]

    Lyu B, Li H, Jiang L, Shan W, Hu C, Deng A, Ying Z, Wang L, Zhang Y, Bechtel H A, Martin M C, Taniguchi T, Watanabe K, Luo W, Wang F, Shi Z 2019 Nano Lett. 19 1982Google Scholar

  • [1] Wang Bo, Zhang Ji-Hong, Li Cong-Ying. Enhancement of near-field thermal radiation of semiconductor vanadium dioxide covered by graphene. Acta Physica Sinica, 2021, 70(5): 054207. doi: 10.7498/aps.70.20201360
    [2] Chen Hua-Jun. Nonlinear optical effect and nonlinear optical mass sensor based on graphene optomechanical system. Acta Physica Sinica, 2020, 69(13): 134203. doi: 10.7498/aps.69.20191745
    [3] Duan Jia-Hua, Chen Jia-Ning. Recent progress of near-field studies of two-dimensional polaritonics. Acta Physica Sinica, 2019, 68(11): 110701. doi: 10.7498/aps.68.20190341
    [4] Qin Kang, Yuan Lie-Rong, Tan Jun, Peng Sheng, Wang Qian-Jin, Zhang Xue-Jin, Lu Yan-Qing, Zhu Yong-Yuan. Surface-enhanced Raman scattering of subwavelength metallic structures. Acta Physica Sinica, 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [5] Lü Xin-Yu, Li Zhi-Qiang. Topological properties of graphene moiré superlattice systems and recent optical studies. Acta Physica Sinica, 2019, 68(22): 220303. doi: 10.7498/aps.68.20191317
    [6] Chen Cai-Yun, Liu Jin-Xing, Zhang Xiao-Min, Li Jin-Long, Ren Ling-Ling, Dong Guo-Cai. Coverage measurement of graphene film on metallic substrate using scanning electron microscopy. Acta Physica Sinica, 2018, 67(7): 076802. doi: 10.7498/aps.67.20172654
    [7] Zhou Rui, Wu Meng-Xue, Shen Fei, Hong Ming-Hui. Super-resolution microscopic effect of microsphere based on the near-field optics. Acta Physica Sinica, 2017, 66(14): 140702. doi: 10.7498/aps.66.140702
    [8] Guo Hui, Lu Hong-Liang, Huang Li, Wang Xue-Yan, Lin Xiao, Wang Ye-Liang, Du Shi-Xuan, Gao Hong-Jun. Intercalation and its mechanism of high quality large area graphene on metal substrate. Acta Physica Sinica, 2017, 66(21): 216803. doi: 10.7498/aps.66.216803
    [9] Zhang Xue-Jin, Lu Yan-Qing, Chen Yan-Feng, Zhu Yong-Yuan, Zhu Shi-Ning. Terahertz surface polaritons. Acta Physica Sinica, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [10] Jiao Yue, Tao Hai-Yan, Ji Bo-Yu, Song Xiao-Wei, Lin Jing-Quan. Near field enhancement of TiO2 nanoparticle array on different substrates for femtosecond laser processing. Acta Physica Sinica, 2017, 66(14): 144203. doi: 10.7498/aps.66.144203
    [11] Yu Zhong, Dang Zhong, Ke Xi-Zheng, Cui Zhen. Optical and electronic properties of N/B doped graphene. Acta Physica Sinica, 2016, 65(24): 248103. doi: 10.7498/aps.65.248103
    [12] Jin Qin, Dong Hai-Ming, Han Kui, Wang Xue-Feng. Ultrafast dynamic optical properties of graphene. Acta Physica Sinica, 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [13] Chen Ying-Liang, Feng Xiao-Bo, Hou De-Dong. Optical absorptions in monolayer and bilayer graphene. Acta Physica Sinica, 2013, 62(18): 187301. doi: 10.7498/aps.62.187301
    [14] Bai Yong-Qiang, Tang Ai-Hui, Wang Shi-Qiang, Zhu Xing. Micro-dynamics of Ca2+ signals in single heart cells. Acta Physica Sinica, 2007, 56(6): 3607-3612. doi: 10.7498/aps.56.3607
    [15] Song Guo-Feng, Gan Qiao-Qiang, Qu Xin, Fang Pei-Yuan, Gao Jian-Xia, Cao Qing, Xu Jun, Kang Xiang-Ning, Xu Yun, Zhong Yuan, Yang Guo-Hua, Chen Liang-Hui. Fabrication process and power and lifetime characteristics of very-small-aperture laser. Acta Physica Sinica, 2005, 54(12): 5609-5613. doi: 10.7498/aps.54.5609
    [16] Xu Geng-Zhao, Liang Hu, Bai Yong-Qiang, Lau Kei-May, Zhu Xing. Study of temperature dependent electroluminescence of InGaN/GaN multiple quantum wells using low temperature scanning near-field optical microscopy. Acta Physica Sinica, 2005, 54(11): 5344-5349. doi: 10.7498/aps.54.5344
    [17] Wang Qian, Xu Jin-Qiang, Wu Jin, Li Yong-Gui. The imaging of chemical samples with a scanning near-field infrared microscope. Acta Physica Sinica, 2003, 52(2): 298-301. doi: 10.7498/aps.52.298
    [18] Zhou Qing, Zhu Xinag, Li Hong-Fu. . Acta Physica Sinica, 2000, 49(2): 210-214. doi: 10.7498/aps.49.210
    [19] WANG ZI-YANG, LI QIN, ZHAO JUN, GUO JI-HUA. STUDY OF THE DISTRIBUTION OF LIGHT INTENSITY OF THE FIBER PROBE OF TRANSMISSION SCANNING NEAR FIELD OPTICAL MICROSCOPY AND THE DISTRIBUTION OF EXCITED FLUORESCE NT MOLECULES. Acta Physica Sinica, 2000, 49(10): 1959-1964. doi: 10.7498/aps.49.1959
    [20] WANG GUI-YING. PRELIMINARY STUDY ON THE NEAR FIELD OPTICS. Acta Physica Sinica, 1997, 46(11): 2154-2159. doi: 10.7498/aps.46.2154
Metrics
  • Abstract views:  9170
  • PDF Downloads:  239
  • Cited By: 0
Publishing process
  • Received Date:  09 October 2019
  • Accepted Date:  08 November 2019
  • Available Online:  01 January 2020
  • Published Online:  20 January 2020

/

返回文章
返回