Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structure and excitation characteristics of C5F10O under external electric field based on density functional theory

Li Ya-Sha Sun Lin-Xiang Zhou Xiao Chen Kai Wang Hui-Yao

Citation:

Structure and excitation characteristics of C5F10O under external electric field based on density functional theory

Li Ya-Sha, Sun Lin-Xiang, Zhou Xiao, Chen Kai, Wang Hui-Yao
PDF
HTML
Get Citation
  • In this paper, we use the density functional theory (B3LYP) method with 6-311g(d) basis sets to optimize the molecular structure of C5F10O and obtain the stable structure of its ground state. On this basis, the geometric characteristics, energy, frontier orbital energy levels, and infrared spectra of C5F10O under the different external electric fields (from 0 to 0.03 a.u., 1 a.u. = 5.142 × 1011 V/m) are studied by the same method. Under the same basis sets, the orbital composition and excitation characteristics of C5F10O are calculated and analyzed by the TD-DFT method. The conclusions show that as the electric field increases, the bond energy of 5C—15F and 4C=16O gradually decrease, their bond lengths increase. The charge of 13F atoms changes fastest, and it is easier to lose electrons under the action of electric field force. The potential energy of the molecule increases, and the stability gradually decreases. The energy gap EG value continuously decreases, and the molecules are more likely to be excited to participate in the chemical reaction. In the infrared spectrum, four absorption peaks are blue-shifted, and four absorption peaks are red-shifted. The excitation characteristics of the first 8 singlet excited states of the C5F10O are identified by the hole-electron analysis method. The excitation energy of the first excited state increases slightly, and the wavelength decreases, and blue shift occurs. The excitation energy values of the other excited states decrease, their wavelengths increase, and red shifts occur. Because the electrons in C5F10O become easier to excite, the stability of the system is lower.
      Corresponding author: Li Ya-Sha, liyasha@ctgu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51577105)
    [1]

    周安春, 高理迎, 冀肖彤, 张名 2018 电网技术 42 3429

    Zhou A C, Gao L Y, Ji X T, Z M 2018 Power Syst Technol 42 3429

    [2]

    Deng Y K, Xiao D M, Chen J 2013 High Voltage Eng 39 2288

    [3]

    Chen X, Yang P Y, Ge G W, Wu Q L, Xie W 2019 Plasma Sci. Technol 21 83

    [4]

    高克利, 颜湘莲, 王浩, 何洁, 李志兵 2018 高电压技术 44 3105

    Gao K L, Yan X L, Wang H, He J, Li B Z 2018 High Voltage Eng 44 3105

    [5]

    Christophorou L G, Olthoff J K 2000 J Phys Chem Ref Data 29 267Google Scholar

    [6]

    肖焓艳, 张晓星, 肖淞, 胡雄雄 2017 电工技术学报 32 20

    Xiao H Y, Zhang X X, Xiao S, Hu X X, 2017 Trans. China Electrotechn. Soc 32 20

    [7]

    张晓星, 田双双, 肖淞, 李祎 2018 电工技术学报 33 2883

    Zhang X X, Tian S S, Xiao S, Li W 2018 Trans. China Electrotechn. Soc 33 2883

    [8]

    肖登明 2016 高压技术 42 1035

    Xiao D M 2016 High Voltage Eng 42 1035

    [9]

    汤峤永, 姚素梅 2018 有机氟工业 4 37

    Tang Q Y, Yao S M 2018 Organo-Fluorine Industry 4 37

    [10]

    Hyrenbach M, Hintzen T, Müller P, John O 2015 23rd International Conference on Electricity Distribution Lyon, June 15−18, 1

    [11]

    Simka P, Ranjan N 2015 19 th International Symposium on High Voltage Engineering Pilsen Czech Republic, August 23-28

    [12]

    Guo Z, Li X W, Li B X, Fu M L, Zhuo R, Wang D B 2019 IEEE Trans. Dielectr. Electr. Insul 26 129Google Scholar

    [13]

    Wada J, Ueta G, Okabe S 2016 IEEE Trans. Dielectr. Electr. Insul 23 838Google Scholar

    [14]

    王小华, 傅熊雄, 韩国辉, 卢彦辉, 李旭旭, 高青青, 荣命哲 2017 高电压技术 43 715

    Wang X H, Fu X X, Han G H, Lu Y H, Li X X, Gao Q Q, Rong M Z 2017 High Voltage Eng 43 715

    [15]

    Märt A, Indrek J, Matti L, Peeter P, Jüri R 2018 J Phys D Appl Phys 51 135205Google Scholar

    [16]

    Stoller P C, Doiron C B, Tehlar D, Simka P, Ranjan N 2017 IEEE Trans. Dielectr. Electr. Insul 24 2712Google Scholar

    [17]

    李兴文, 邓云坤, 姜旭, 赵虎, 卓然, 王邸博, 傅明利 2017 高电压技术 43 708

    Li X W, Deng Y K, Jiang X, Zhao H, Zhuo R, Wang D B, Fu M L 2017 High Voltage Eng 43 708

    [18]

    邓云坤, 马仪, 王达达, 郭泽, 李兴文, 赵虎 2018 电器与能效管理技术 10 40

    Deng Y K, Ma Y, Wang D D, Guo Z, Li X W, Zhao H 2018 Electr. Ene Manag Technol 10 40

    [19]

    马仪, 邓云坤 2018 广东电力 31 44

    Ma Y, Deng Y K 2018 Guangdong Electr Power 31 44

    [20]

    Lei Z C, Zeng F P, Tang J, Wan Z F, Zhang M X, Dai L J 2019 IEEE Access 7 92724Google Scholar

    [21]

    Zhang Y, Zhang X X, Li Y, Li Y L, Chen Q, Zhang G Z, Xiao S, Tang J 2019 RSC Adv 9 18963Google Scholar

    [22]

    Fu Y W, Wang X H, Yang A J, Rong M Z 2019 AIP Adv 9 015318Google Scholar

    [23]

    李庆民, 黄旭炜, 刘涛, 闫江燕, 王兆东, 张颖, 鲁旭 2016 电工技术学报 31 1Google Scholar

    Li Q M, Huang X W, Liu T, Yan J Y, Wang Z D, Zhang Y, Lu X 2016 Trans. China Electrotechn. Soc 31 1Google Scholar

    [24]

    Frish M J, Trucks G W, Schlegal H B 2010 Gaussian 09, Revision B01. Walling ford: Gaussian Inc

    [25]

    段逸群, 刘玉柱, 李静, 张翔云, 秦朝朝, 布玛丽亚·阿布力米提 2018 原子与分子物理学报 35 719Google Scholar

    Duan Y Q, Liu Y Z, Li J, Zhang X Y, Qin C C, Abulimiti B 2018 J Atom Mol Phys 35 719Google Scholar

    [26]

    吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋 2015 物理学报 64 153102Google Scholar

    Wu Y G, Li S X, Hao J X, Xu M, Sun G Y, Linghu R F 2015 Acta Phys. Sin 64 153102Google Scholar

    [27]

    徐光宪, 黎乐民, 王德民 2007 量子化学: 基本原理和从头计算法(中册)(北京: 科学出版社)第3页

    Xu G X, Li L M, Wang D M 2007 Quantum Chemistry: Basic Principle and ab Initio Calculation (Vol. 2) (Beijing: Science Press) P3 (in Chinese)

    [28]

    Grozema F C, Telesca R, Joukman H T 2001 Chem. Phys. 115 10014

    [29]

    Kjeellberg P, Zhi H, Tonu P J 2003 Phys. Chem. B 107 13737Google Scholar

    [30]

    朱正和, 付依备, 高涛, 陈银亮, 陈晓军 2003 原子与分子物理学报 2 169Google Scholar

    Zhu Z H, Fu Y. B, Gao T, Chen Y L, Chen X J 2003 J Atom Mol Phys 2 169Google Scholar

    [31]

    李祎, 张晓星, 肖淞, 黄立群, 唐焗, 邓载韬, 田双双 2018 中国电机工程学报 38 4298

    Li Y, Zhang X X, Xiao S, Huang L Q, Tang J, Deng Z T, Tian S S 2018 Chin. Soc. Elec. Eng 38 4298

    [32]

    黄多辉, 王藩侯, 程晓洪, 万明杰, 蒋刚 2011 物理学报 60 123101

    Huang D H, Wang P H, Cheng X H, Wan M J, Jiang G 2011 Acta Phys. Sin 60 123101

    [33]

    卢天, 陈飞武 2012 物理化学学报 28 1Google Scholar

    Lu T, Chen F W 2012 Acta Phys-Chim. Sin. 28 1Google Scholar

    [34]

    李鑫, 张梁, 羊梦诗, 储修祥, 徐灿, 陈亮, 王悦悦 2014 物理学报 63 076102

    Li X, Zhang L, Yang M S, Chu X X, Xu C, Chen L, Wang Y Y 2014 Acta Phys. Sin. 63 076102

    [35]

    Lu T, Chen F W 2012 J. Comput. Chem 33 580Google Scholar

    [36]

    段雪珂, 任娟娟, 郝赫, 张淇, 龚旗煌, 古英, 2019 物理学报 68 144201Google Scholar

    Duan X K, Ren J J, Hao H, Zhang Q, Gong Q H, Gu Y 2019 Acta Phys. Sin. 68 144201Google Scholar

    [37]

    Lu T, Chen F W, 2013 J. Phys. Chem. A 117 3100Google Scholar

  • 图 1  C5F10O分子的基态结构

    Figure 1.  Stable structure of C5F10O.

    图 2  不同电场强度下C5F10O分子的键长变化

    Figure 2.  Bond length of C5F10O at different electric field.

    图 3  不同电场强度下C5F10O分子的键角变化

    Figure 3.  Bond angle of C5F10O at different electric field.

    图 4  不同电场强度下C5F10O的NBO电荷布局数

    Figure 4.  NBO charge of C5F10O at different electric field.

    图 5  不同电场强度下C5F10O的电子云

    Figure 5.  Electron cloud of C5F10O at different electric field.

    图 6  能量随电场强度的变化 (a), (b), (c)分别是总能量、动能和势能随电场强度的变化

    Figure 6.  Variation of energy of C5F10O at different electric field. Panels (a), (b), and (c) are changes of total energy, kinetic energy, and potential energy at different electric field.

    图 7  C5F10O的前线轨道图

    Figure 7.  Molecular frontier orbital of C5F10O.

    图 8  不同电场强度下C5F10O的能隙变化

    Figure 8.  Energy gap of C5F10O at different electric field

    图 9  不同电场强度下C5F10O的红外光谱

    Figure 9.  Infrared spectrum of C5F10O at different electric field.

    图 10  C5F10O前8个单重激发态的电子跃迁图(等值面为0.02)

    Figure 10.  Electron transition of first 8 single-excited states of C5F10O (value = 0.02).

    图 11  C5F10O第5个单重激发态的电子跃迁图(等值面为0.01)

    Figure 11.  Electron transition of the 5 single-excited states of C5F10O (value = 0.01).

    表 1  C5F10O分子键长与文献值的对比

    Table 1.  The bond length of C5F10O compared with the reference

    ContrastR(4, 16)/nmR(5, 15)/nmR(3, 4)/nmR(3, 12)/nmR(4, 5)/nm
    Reference0.1170000.1306000.1540000.1328000.153900
    Theoretical calculation0.1190860.1329330.1558960.1354970.155892
    Relative error/%1.7830.17861.2312.0301.294
    DownLoad: CSV

    表 2  不同电场强度下C5F10O的前线轨道能级

    Table 2.  Frontier orbital energy levels of C5F10O at different electric field.

    F/a.u.EL/eVEH/eVEG/eV
    0.000–3.197–8.9685.771
    0.003–3.260–9.0215.760
    0.006–3.324–9.0735.748
    0.009–3.388–9.1235.735
    0.012–3.453–9.1725.719
    0.015–3.517–9.2195.702
    0.018–3.583–9.2655.683
    0.021–3.649–9.3105.661
    0.024–3.715–9.3535.638
    0.027–3.783–9.3955.612
    0.030–3.852–9.4355.582
    DownLoad: CSV

    表 3  C5F10O前8个单重激发态的激发特性

    Table 3.  Excitation characteristics of first 8 singlet-excited states of C5F10O.

    Excited StateDtEC/eVOrbital-Contribution (hole)Orbital-Contribution (electron)
    S(0) → S(1)0.267–0.7009.775374MO 64-95.39%MO 65-99.352%
    S(0) → S(2)1.7230.6486.741638MO 63-78.436%MO 65-98.828%
    S(0) → S(3)0.570–0.3558.394609MO 55-13.986% MO 57-44.649%, MO 65-99.139%
    S(0) → S(4)1.135–0.1396.968679MO 52-19.354% MO 55-17.810% MO 62-28.358%, MO 65-99.049%
    S(0) → S(5)1.144–0.3007.015306MO 64-86.457%MO 66-84.652%
    S(0) → S(6)1.8620.8796.505353MO 60-34.078% MO 61-55.521%MO 65-91.502%
    S(0) → S(7)1.6010.5666.600581MO 56-19.786% MO 58-16.594% MO 59-30.422%MO 65-96.849%
    S(0) → S(8)0.948–0.0796.641575MO 55-33.730% MO 57-21.883% MO 62-22.257%MO 65-99.078%
    DownLoad: CSV

    表 4  不同电场强度下C5F10O前8个单重激发态的激发能

    Table 4.  Excitation energy of first 8 singlet-excited states of C5F10O at different electric field.

    F/a.u.Eex/eV
    0.0000.0030.0060.0090.0120.0150.0180.0210.0240.0270.030
    n = 14.0414.0524.0634.0724.0784.0864.0914.0954.0974.0974.095
    n = 27.3247.2837.2407.1957.1487.0997.0486.9966.9406.8836.823
    n = 38.4278.4008.3688.3298.2838.2108.0897.9637.8337.7007.565
    n = 48.6918.6518.5608.4518.3368.2368.1688.0877.9807.8537.719
    n = 58.7158.6738.6188.5678.4998.3978.2778.1548.0417.9357.823
    n = 68.7768.7598.7878.6938.5888.5098.4448.3818.3078.2088.098
    n = 79.0198.9198.8118.8148.7708.6638.5538.4468.3518.2838.225
    n = 89.1599.0768.9838.8838.8268.7728.6828.5838.4818.3788.277
    DownLoad: CSV

    表 5  不同电场强度下C5F10O前8个单重激发态的波长

    Table 5.  Wavelength of first 8 singlet-excited states of C5F10O at different electric field.

    F/a.u.λ/nm
    0.0000.0030.0060.0090.0120.0150.0180.0210.0240.0270.030
    n = 1306.80305.93305.16304.48303.89303.41303.04302.78302.64302.63302.75
    n = 2169.28170.24171.25172.32173.45174.64175.90177.23178.64180.13181.71
    n = 3147.12147.60148.17148.85149.68151.01153.27155.71158.29161.02163.88
    n = 4142.65143.31144.84146.72148.73150.54151.79153.31155.36157.87160.62
    n = 5142.27142.96143.86144.72145.89147.65149.80152.05154.18156.26158.48
    n = 6141.28141.55141.10142.63144.37145.72146.83147.94149.25151.05153.10
    n = 7137.48139.02140.72140.66141.37143.12144.96146.80148.47149.69150.75
    n = 8135.37136.61138.03139.57140.47141.34142.80144.45146.19147.98149.79
    DownLoad: CSV

    表 6  不同电场强度下C5F10O前8个单重激发态的振子强度

    Table 6.  Oscillator strength of first 8 singlet-excited states of C5F10O at different electric field.

    F/a.u.f
    0.0000.0030.0060.0090.0120.0150.0180.0210.0240.0270.030
    n = 10.00020.00020.00020.00020.00020.00010.00010.00010.00010.00010.0001
    n = 20.00330.00320.00300.00290.00280.00260.00260.00250.00240.00240.0024
    n = 30.00150.00200.00250.00300.00350.00390.00440.00450.00450.00450.0044
    n = 40.00140.00120.00240.00350.00420.00480.00530.00550.00520.00520.0055
    n = 50.05910.00270.00390.00490.00730.00830.00800.00860.01020.01170.0131
    n = 60.01620.07380.06410.00660.00240.00050.00040.00040.00230.00470.0047
    n = 70.01800.01270.01480.05700.00980.01010.01070.01040.00780.00480.0054
    n = 80.00130.00080.00390.00940.02760.00780.01260.01700.02030.02280.0236
    DownLoad: CSV
  • [1]

    周安春, 高理迎, 冀肖彤, 张名 2018 电网技术 42 3429

    Zhou A C, Gao L Y, Ji X T, Z M 2018 Power Syst Technol 42 3429

    [2]

    Deng Y K, Xiao D M, Chen J 2013 High Voltage Eng 39 2288

    [3]

    Chen X, Yang P Y, Ge G W, Wu Q L, Xie W 2019 Plasma Sci. Technol 21 83

    [4]

    高克利, 颜湘莲, 王浩, 何洁, 李志兵 2018 高电压技术 44 3105

    Gao K L, Yan X L, Wang H, He J, Li B Z 2018 High Voltage Eng 44 3105

    [5]

    Christophorou L G, Olthoff J K 2000 J Phys Chem Ref Data 29 267Google Scholar

    [6]

    肖焓艳, 张晓星, 肖淞, 胡雄雄 2017 电工技术学报 32 20

    Xiao H Y, Zhang X X, Xiao S, Hu X X, 2017 Trans. China Electrotechn. Soc 32 20

    [7]

    张晓星, 田双双, 肖淞, 李祎 2018 电工技术学报 33 2883

    Zhang X X, Tian S S, Xiao S, Li W 2018 Trans. China Electrotechn. Soc 33 2883

    [8]

    肖登明 2016 高压技术 42 1035

    Xiao D M 2016 High Voltage Eng 42 1035

    [9]

    汤峤永, 姚素梅 2018 有机氟工业 4 37

    Tang Q Y, Yao S M 2018 Organo-Fluorine Industry 4 37

    [10]

    Hyrenbach M, Hintzen T, Müller P, John O 2015 23rd International Conference on Electricity Distribution Lyon, June 15−18, 1

    [11]

    Simka P, Ranjan N 2015 19 th International Symposium on High Voltage Engineering Pilsen Czech Republic, August 23-28

    [12]

    Guo Z, Li X W, Li B X, Fu M L, Zhuo R, Wang D B 2019 IEEE Trans. Dielectr. Electr. Insul 26 129Google Scholar

    [13]

    Wada J, Ueta G, Okabe S 2016 IEEE Trans. Dielectr. Electr. Insul 23 838Google Scholar

    [14]

    王小华, 傅熊雄, 韩国辉, 卢彦辉, 李旭旭, 高青青, 荣命哲 2017 高电压技术 43 715

    Wang X H, Fu X X, Han G H, Lu Y H, Li X X, Gao Q Q, Rong M Z 2017 High Voltage Eng 43 715

    [15]

    Märt A, Indrek J, Matti L, Peeter P, Jüri R 2018 J Phys D Appl Phys 51 135205Google Scholar

    [16]

    Stoller P C, Doiron C B, Tehlar D, Simka P, Ranjan N 2017 IEEE Trans. Dielectr. Electr. Insul 24 2712Google Scholar

    [17]

    李兴文, 邓云坤, 姜旭, 赵虎, 卓然, 王邸博, 傅明利 2017 高电压技术 43 708

    Li X W, Deng Y K, Jiang X, Zhao H, Zhuo R, Wang D B, Fu M L 2017 High Voltage Eng 43 708

    [18]

    邓云坤, 马仪, 王达达, 郭泽, 李兴文, 赵虎 2018 电器与能效管理技术 10 40

    Deng Y K, Ma Y, Wang D D, Guo Z, Li X W, Zhao H 2018 Electr. Ene Manag Technol 10 40

    [19]

    马仪, 邓云坤 2018 广东电力 31 44

    Ma Y, Deng Y K 2018 Guangdong Electr Power 31 44

    [20]

    Lei Z C, Zeng F P, Tang J, Wan Z F, Zhang M X, Dai L J 2019 IEEE Access 7 92724Google Scholar

    [21]

    Zhang Y, Zhang X X, Li Y, Li Y L, Chen Q, Zhang G Z, Xiao S, Tang J 2019 RSC Adv 9 18963Google Scholar

    [22]

    Fu Y W, Wang X H, Yang A J, Rong M Z 2019 AIP Adv 9 015318Google Scholar

    [23]

    李庆民, 黄旭炜, 刘涛, 闫江燕, 王兆东, 张颖, 鲁旭 2016 电工技术学报 31 1Google Scholar

    Li Q M, Huang X W, Liu T, Yan J Y, Wang Z D, Zhang Y, Lu X 2016 Trans. China Electrotechn. Soc 31 1Google Scholar

    [24]

    Frish M J, Trucks G W, Schlegal H B 2010 Gaussian 09, Revision B01. Walling ford: Gaussian Inc

    [25]

    段逸群, 刘玉柱, 李静, 张翔云, 秦朝朝, 布玛丽亚·阿布力米提 2018 原子与分子物理学报 35 719Google Scholar

    Duan Y Q, Liu Y Z, Li J, Zhang X Y, Qin C C, Abulimiti B 2018 J Atom Mol Phys 35 719Google Scholar

    [26]

    吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋 2015 物理学报 64 153102Google Scholar

    Wu Y G, Li S X, Hao J X, Xu M, Sun G Y, Linghu R F 2015 Acta Phys. Sin 64 153102Google Scholar

    [27]

    徐光宪, 黎乐民, 王德民 2007 量子化学: 基本原理和从头计算法(中册)(北京: 科学出版社)第3页

    Xu G X, Li L M, Wang D M 2007 Quantum Chemistry: Basic Principle and ab Initio Calculation (Vol. 2) (Beijing: Science Press) P3 (in Chinese)

    [28]

    Grozema F C, Telesca R, Joukman H T 2001 Chem. Phys. 115 10014

    [29]

    Kjeellberg P, Zhi H, Tonu P J 2003 Phys. Chem. B 107 13737Google Scholar

    [30]

    朱正和, 付依备, 高涛, 陈银亮, 陈晓军 2003 原子与分子物理学报 2 169Google Scholar

    Zhu Z H, Fu Y. B, Gao T, Chen Y L, Chen X J 2003 J Atom Mol Phys 2 169Google Scholar

    [31]

    李祎, 张晓星, 肖淞, 黄立群, 唐焗, 邓载韬, 田双双 2018 中国电机工程学报 38 4298

    Li Y, Zhang X X, Xiao S, Huang L Q, Tang J, Deng Z T, Tian S S 2018 Chin. Soc. Elec. Eng 38 4298

    [32]

    黄多辉, 王藩侯, 程晓洪, 万明杰, 蒋刚 2011 物理学报 60 123101

    Huang D H, Wang P H, Cheng X H, Wan M J, Jiang G 2011 Acta Phys. Sin 60 123101

    [33]

    卢天, 陈飞武 2012 物理化学学报 28 1Google Scholar

    Lu T, Chen F W 2012 Acta Phys-Chim. Sin. 28 1Google Scholar

    [34]

    李鑫, 张梁, 羊梦诗, 储修祥, 徐灿, 陈亮, 王悦悦 2014 物理学报 63 076102

    Li X, Zhang L, Yang M S, Chu X X, Xu C, Chen L, Wang Y Y 2014 Acta Phys. Sin. 63 076102

    [35]

    Lu T, Chen F W 2012 J. Comput. Chem 33 580Google Scholar

    [36]

    段雪珂, 任娟娟, 郝赫, 张淇, 龚旗煌, 古英, 2019 物理学报 68 144201Google Scholar

    Duan X K, Ren J J, Hao H, Zhang Q, Gong Q H, Gu Y 2019 Acta Phys. Sin. 68 144201Google Scholar

    [37]

    Lu T, Chen F W, 2013 J. Phys. Chem. A 117 3100Google Scholar

  • [1] Li Shi-Xiong, Chen De-Liang, Zhang Zheng-Ping, Long Zheng-Wen, Qin Shui-Jie. Study on the ground state properties and excitation properties of C18 under different external electric fields. Acta Physica Sinica, 2020, 69(10): 103101. doi: 10.7498/aps.69.20200268
    [2] Li Ya-Sha, Xie Yun-Long, Huang Tai-Huan, Xu Cheng, Liu Guo-Cheng. Molecular structure and properties of salt cross-linked polyethylene under external electric field based on density functional theory. Acta Physica Sinica, 2018, 67(18): 183101. doi: 10.7498/aps.67.20180808
    [3] Sun Jian-Ping, Zhou Ke-Liang, Liang Xiao-Dong. Density functional study on the adsorption characteristics of O, O2, OH, and OOH of B-, P-doped, and B, P codoped graphenes. Acta Physica Sinica, 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [4] Yang Tao, Liu Dai-Jun, Chen Jian-Jun. Molecular structure and properties of sulfur dioxide under the external electric field. Acta Physica Sinica, 2016, 65(5): 053101. doi: 10.7498/aps.65.053101
    [5] Li Shi-Xiong, Wu Yong-Gang, Linghu Rong-Feng, Sun Guang-Yu, Zhang Zheng-Ping, Qin Shui-Jie. Ground state properties and excitation properties of ZnSe under different external electric fields. Acta Physica Sinica, 2015, 64(4): 043101. doi: 10.7498/aps.64.043101
    [6] Cao Xin-Wei, Ren Yang, Liu Hui, Li Shu-Li. Molecular structure and excited states for BN under strong electric field. Acta Physica Sinica, 2014, 63(4): 043101. doi: 10.7498/aps.63.043101
    [7] Sun Jian-Ping, Miao Ying-Meng, Cao Xiang-Chun. Density functional theory studies of O2 and CO adsorption on the graphene doped with Pd. Acta Physica Sinica, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [8] Li Tao, Tang Yan-Lin, Ling Zhi-Gang, Li Yu-Peng, Long Zhen-Wen. Influence of external electric field on the molecular structure and electronic spectrum of paranitrochlorobenzene. Acta Physica Sinica, 2013, 62(10): 103103. doi: 10.7498/aps.62.103103
    [9] Huang Duo-Hui, Wang Fan-Hou, Cheng Xiao-Hong, Wan Ming-Jie, Jiang Gang. The study of structure characteristics of GeTe and GeSe molecules under the external electric field. Acta Physica Sinica, 2011, 60(12): 123101. doi: 10.7498/aps.60.123101
    [10] Xu Guo-Liang, Liu Xue-Feng, Xia Yao-Zheng, Zhang Xian-Zhou, Liu Yu-Fang. Excitation of Si2O molecule under external electric field. Acta Physica Sinica, 2010, 59(11): 7756-7761. doi: 10.7498/aps.59.7756
    [11] Xu Guo-Liang, Xia Yao-Zheng, Liu Xue-Feng, Zhang Xian-Zhou, Liu Yu-Fang. Effect of external electric field excitation on titanium monoxide. Acta Physica Sinica, 2010, 59(11): 7762-7768. doi: 10.7498/aps.59.7762
    [12] Cai Shao-Hong, Zhou Ye-Hong. The excited states structure for chloroethylene under the external electric field. Acta Physica Sinica, 2010, 59(11): 7749-7755. doi: 10.7498/aps.59.7749
    [13] Yang Jian, Wang Ni-Ying, Zhu Dong-Jiu, Chen Xuan, Deng Kai-Ming, Xiao Chuan-Yun. Density functional calculation of the geometric and magnetic properties of MPb10(M=Ti,V,Cr,Cu,Pd) clusters. Acta Physica Sinica, 2009, 58(5): 3112-3117. doi: 10.7498/aps.58.3112
    [14] Tang Chun-Mei, Chen Xuan, Deng Kai-Ming, Hu Feng-Lan, Huang De-Cai, Xia Hai-Yan. The evolution of the structure and electronic properties of the fullerene derivatives C60(CF3)n(n=2, 4, 6, 10): A density functional calculation. Acta Physica Sinica, 2009, 58(4): 2675-2679. doi: 10.7498/aps.58.2675
    [15] Cao Qing-Song, Deng Kai-Ming, Chen Xuan, Tang Chun-Mei, Huang De-Cai. Density functional study on the geometric and electronic properties of MC20F20 (M=Li, Na, Be, Mg). Acta Physica Sinica, 2009, 58(3): 1863-1869. doi: 10.7498/aps.58.1863
    [16] Xu Guo-Liang, Lü Wen-Jing, Liu Yu-Fang, Zhu Zun-Lüe, Zhang Xian-Zhou, Sun Jin-Feng. Effect of external electric field on the optical excitation of silicon dioxide. Acta Physica Sinica, 2009, 58(5): 3058-3063. doi: 10.7498/aps.58.3058
    [17] Sheng Yong, Mao Hua-Ping, Tu Ming-Jing. DFT study on the Mg-doped TinMg (n=1—10) clusters. Acta Physica Sinica, 2008, 57(7): 4153-4158. doi: 10.7498/aps.57.4153
    [18] Jiao Yu-Qiu, Zhao Kun, Lu Gui-Wu. Density functional theory studies on spectral properties of H3PAuPh and (H3PAu)2(1,4-C6H4)2. Acta Physica Sinica, 2008, 57(3): 1592-1598. doi: 10.7498/aps.57.1592
    [19] Xu Guo-Liang, Xiao Xiao-Hong, Geng Zhen-Duo, Liu Yu-Fang, Zhu Zheng-He. Effect of external electric field excitation on methyl vinyl siloxane. Acta Physica Sinica, 2007, 56(9): 5196-5201. doi: 10.7498/aps.56.5196
    [20] Xu Guo-Liang, Zhu Zheng-He, Ma Mei-Zhong, Xie An-Dong. Study on the effect of external electric field excitation on methane. Acta Physica Sinica, 2005, 54(7): 3087-3093. doi: 10.7498/aps.54.3087
Metrics
  • Abstract views:  7702
  • PDF Downloads:  90
  • Cited By: 0
Publishing process
  • Received Date:  24 September 2019
  • Accepted Date:  23 October 2019
  • Available Online:  14 December 2019
  • Published Online:  05 January 2020

/

返回文章
返回