-
With the rapid development of integrated photonics, expensive and bulky commercial spectrometers force people to make more efforts to investigate high-performance, integrated and low-cost spectrometers. Spectrometers benefiting from the complementary metal-oxide semiconductor (CMOS) technology have greatly enriched the applications of spectrum detection while devices based on optical fibers still have potential development room. Owing to the strong dependence of multimode interference on wavelength generated in a multimode fiber, probe signals of arbitrary spectra could be detected by a detector array integrated on the top and reconstructed by using a compressive sensing (CS) algorithm. The CS algorithm has been widely used in signal processing, which saves more computing storage and time but maintains the same precision. With the interference pattern system, our spectrometer based on a fiber taper achieves a spectral resolution of 20 pm (one order of magnitude better than commercial spectrometers) and a detection bandwidth of more than 200 nm on a device length of 1 mm. After optimizing the energy function, the spectral reconstruction results show excellent detection capability and metamerism effect superior to RGB cameras or human eyes, providing a significant role for portable multi-functional on-chip systems in future.
-
Keywords:
- multimode fiber /
- spectrometer /
- compressive sensing
[1] 张彤, 张维光, 蔡亚君, 胡晓鸿, 冯野, 王屹山, 于佳 2019 物理学报 68 234204Google Scholar
Zhang T, Zhang W G, Cai Y J, Hu X H, Feng Y, Wang Y S, Yu J 2019 Acta Phys. Sin. 68 234204Google Scholar
[2] 孙剑, 李唐军, 王目光, 贾楠, 石彦超, 王春灿, 冯素春 2019 物理学报 68 114210Google Scholar
Sun J, Li T J, Wang M G, Jia N, Shi Y C, Wang C C, Feng S C 2019 Acta Phys. Sin. 68 114210Google Scholar
[3] Webb K E, Xu Y Q, Erkintalo M, Murdoch S G 2013 Opt. Lett. 38 151Google Scholar
[4] Xu F, Wu Z X, Lu Y Q 2017 Prog. Quantum Electron. 55 35Google Scholar
[5] Morosi J, Berti N, Akrout A, Picozzi A, Guasoni M, Fatome J 2018 Opt. Express 26 845Google Scholar
[6] Bromage J, Paper T 2004 J. Lightwave Technol. 22 79Google Scholar
[7] Mao Y Q, Wang B X, Zhao C X, Wang G Q, Wang R C, Wang H H, Nie J M, Chen Q, Zhao Y, Zhang Q, Zhang J, Chen T Y, Pan J W 2017 Opt. Express 26 6010
[8] Semrau D, Killey R, Bayvel P 2017 Opt. Express 25 13024Google Scholar
[9] Santos J L, Leite A P, Jackson D A 1992 Appl. Opt. 31 7361Google Scholar
[10] 涂兴华, 赵宜超 2019 物理学报 68 244204Google Scholar
Tu X H, Zhao Y C 2019 Acta Phys. Sin. 68 244204Google Scholar
[11] Zhou D P, Peng W, Chen L, Bao X Y 2019 Opt. Express 27 17069Google Scholar
[12] Chai Q, Luo Y 2019 Opt. Eng. 58 1
[13] 刘昱, 任国斌, 靳文星, 吴越, 杨宇光, 简水生 2018 物理学报 67 014208Google Scholar
Liu Y, Ren G B, Jin W X, Wu Y, Yang Y G, Jian S S 2018 Acta Phys. Sin. 67 014208Google Scholar
[14] Chen L, Duan Y H, Zhou H D, Zhou X, Zhang C, Zhang X L 2017 Opt. Express 25 9416Google Scholar
[15] Redding B, Alam M, Seifert M, Cao H 2014 Optica 1 175Google Scholar
[16] Shaw M J, Henson R L, Houk S E, Westhoff J W, Jones M W, Richter-Addo G 2002 J. Electroanal. Chem. 534 47Google Scholar
[17] Hornig G J, Harrison T R, Bu L, Azmayesh-Fard S, Decorby R G 2019 OSA Continuum 2 495Google Scholar
[18] Hang Q, Ung B, Syed I, Guo N, Skorobogatiy M 2010 Appl. Opt. 49 4791Google Scholar
[19] Xu Z C, Wang Z L, Sullivan M, Brady D, Foulger S H, Adibi A 2003 Opt. Express 11 2126Google Scholar
[20] Yang T, Xu C, Ho H P, Zhu Y Y, Hong X H, Wang Q J, Chen Y C, Li X A, Zhou X H, Yi M D, Huang W 2015 Opt. Lett. 40 3217Google Scholar
-
-
[1] 张彤, 张维光, 蔡亚君, 胡晓鸿, 冯野, 王屹山, 于佳 2019 物理学报 68 234204Google Scholar
Zhang T, Zhang W G, Cai Y J, Hu X H, Feng Y, Wang Y S, Yu J 2019 Acta Phys. Sin. 68 234204Google Scholar
[2] 孙剑, 李唐军, 王目光, 贾楠, 石彦超, 王春灿, 冯素春 2019 物理学报 68 114210Google Scholar
Sun J, Li T J, Wang M G, Jia N, Shi Y C, Wang C C, Feng S C 2019 Acta Phys. Sin. 68 114210Google Scholar
[3] Webb K E, Xu Y Q, Erkintalo M, Murdoch S G 2013 Opt. Lett. 38 151Google Scholar
[4] Xu F, Wu Z X, Lu Y Q 2017 Prog. Quantum Electron. 55 35Google Scholar
[5] Morosi J, Berti N, Akrout A, Picozzi A, Guasoni M, Fatome J 2018 Opt. Express 26 845Google Scholar
[6] Bromage J, Paper T 2004 J. Lightwave Technol. 22 79Google Scholar
[7] Mao Y Q, Wang B X, Zhao C X, Wang G Q, Wang R C, Wang H H, Nie J M, Chen Q, Zhao Y, Zhang Q, Zhang J, Chen T Y, Pan J W 2017 Opt. Express 26 6010
[8] Semrau D, Killey R, Bayvel P 2017 Opt. Express 25 13024Google Scholar
[9] Santos J L, Leite A P, Jackson D A 1992 Appl. Opt. 31 7361Google Scholar
[10] 涂兴华, 赵宜超 2019 物理学报 68 244204Google Scholar
Tu X H, Zhao Y C 2019 Acta Phys. Sin. 68 244204Google Scholar
[11] Zhou D P, Peng W, Chen L, Bao X Y 2019 Opt. Express 27 17069Google Scholar
[12] Chai Q, Luo Y 2019 Opt. Eng. 58 1
[13] 刘昱, 任国斌, 靳文星, 吴越, 杨宇光, 简水生 2018 物理学报 67 014208Google Scholar
Liu Y, Ren G B, Jin W X, Wu Y, Yang Y G, Jian S S 2018 Acta Phys. Sin. 67 014208Google Scholar
[14] Chen L, Duan Y H, Zhou H D, Zhou X, Zhang C, Zhang X L 2017 Opt. Express 25 9416Google Scholar
[15] Redding B, Alam M, Seifert M, Cao H 2014 Optica 1 175Google Scholar
[16] Shaw M J, Henson R L, Houk S E, Westhoff J W, Jones M W, Richter-Addo G 2002 J. Electroanal. Chem. 534 47Google Scholar
[17] Hornig G J, Harrison T R, Bu L, Azmayesh-Fard S, Decorby R G 2019 OSA Continuum 2 495Google Scholar
[18] Hang Q, Ung B, Syed I, Guo N, Skorobogatiy M 2010 Appl. Opt. 49 4791Google Scholar
[19] Xu Z C, Wang Z L, Sullivan M, Brady D, Foulger S H, Adibi A 2003 Opt. Express 11 2126Google Scholar
[20] Yang T, Xu C, Ho H P, Zhu Y Y, Hong X H, Wang Q J, Chen Y C, Li X A, Zhou X H, Yi M D, Huang W 2015 Opt. Lett. 40 3217Google Scholar
Catalog
Metrics
- Abstract views: 6176
- PDF Downloads: 80
- Cited By: 0